2017 Annual Monitoring Report

AS/SVE System
Former Fuel Depot Area – Site 7
Naval Weapons Industrial Reserve Plant
Calverton, New York

Contract No. N40085-10-D-9409 Contract Task Order No. 0003

January 2018

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton, Pennsylvania 19341 (610) 363-3000

2017 Annual Monitoring Report

AS/SVE System Former Fuel Depot Area – Site 7 Naval Weapons Industrial Reserve Plant Calverton, New York

Contract No. N40085-10-D-9409 Contract Task Order No. 0003

January 2018

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

O+0 11.	
Starting Solvation	01/29/18
Patrick Schauble	Date
Program Manager	

Stephane Ray

01/29/18 Date

Stephane Roy Project Manager

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1-1
2.0		ackgroundITORING	
	2.1 Gr 2.1.1	roundwater Quality MonitoringGroundwater Flow	
	2.1.2	Groundwater Quality Results	
	2.1.3	Quality Assurance/Quality Control Sampling	
	2.1.4	Groundwater Concentration Trends	2-3
2.0	2.1.5	LNAPL Monitoring	2-5
3.0		CLUSIONS AND RECOMMENDATIONS	
4.0	REFE	RENCES	4-1
TAE	BLES		
TAB	LE 1A	Summary of Groundwater Elevation Data – April 2017	
TAB	LE 1B	Summary of Groundwater Elevation Data – October 2017	
TAB	LE 2A	Summary of Groundwater Chemistry Results - April 2017	
TAB	LE 2B	Summary of Groundwater Chemistry Results - October 2017	
TAB	LE 3A	Summary of Groundwater Analytical Results – April 2017	
TAB	LE 3B	Summary of Groundwater Analytical Results - October 2017	
TAB	LE 4	Summary of Groundwater Analytical Results - December 2013 - October 2017	
TAB	LE 5A	Summary of Historical Groundwater Analytical Results - Monitoring Wells	
TAB	LE 5B	Summary of Historical Groundwater Analytical Results – SVE Wells	
<u>FIG</u>	<u>URES</u>		
FIGU	JRE 1	Site Location Map	
FIGU	JRE 2	Site Layout Map	
FIGU	JRE 3A	Groundwater Elevation / Flow Map – April 2017	
FIGU	JRE 3B	Groundwater Elevation / Flow Map – October 2017	
FIGU	JRE 4	Groundwater Concentration Map – October 2017 – Monitoring Wells	
FIGU	JRE 5	Groundwater Concentration Map – October 2017 – SVE Wells	

APPENDICES

APPENDIX A Field Logs and Chain of Cus	stody Documentation
--	---------------------

- APPENDIX B Data Validation Report and Validated Data Summary
- APPENDIX C Groundwater Concentration Trends December 2013 October 2017
- APPENDIX D Groundwater Concentration Trends March 2006 October 2017

Acronyms and Abbreviations

AS air sparge

BTEX benzene, toluene, ethylbenzene, and xylenes

COC constituent of concern

DO dissolved oxygen

DOD Department of Defense

ELAP Environmental Laboratory Accreditation Program

FB field blank

H&S Environmental, Inc.

KGS KOMAN Government Solutions, LLC

LNAPL Light Non-Aqueous Phase Liquid

MS/MSD matrix spike/matrix spike duplicate

NAVFAC Naval Facilities Engineering Command Mid-Atlantic

Navy U.S. Department of the Navy

NELAC National Environmental Accreditation Conference

NWIRP Naval Weapons Industrial Reserve Plant

O&M Operations and Maintenance
ORP oxidation reduction potential

PID photoionization device PCG Proposed Closeout Goal

QA/QC quality assurance / quality control

ROD Record of Decision

RPD relative percent difference

SC specific conductance SVE soil vapor extraction

SVOC semivolatile organic compound

TB trip blank

TtEC Tetra Tech EC, Inc.

USEPA U.S. Environmental Protection Agency

UST underground storage tank
VFD variable frequency drive

VOC volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this Annual Monitoring Report for the former Fuel Depot Area (Site 7) Air Sparge / Soil Vapor Extraction (AS/SVE) System at the Naval Weapons Industrial Reserve Plant (NWIRP) in Calverton, New York (NWIRP Calverton). This report has been prepared for the U.S. Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-10-D-9409, Contract Task Order No. 0003. This 2017 Annual Monitoring Report summarizes the activities that occurred during the Spring and Fall of 2017. Data was collected, and operational activities were performed by KGS in accordance with the following documents:

- Final Operations and Maintenance Manual for Soil Vapor Extraction / Air Sparging System
 prepared by Tetra Tech EC, Inc. (TtEC) in 2006, hereafter referred to as the "O&M Manual."
- Performance and Shutdown Evaluation of the Air Sparge/Soil Vapor Extraction System, Site 7 –
 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by
 Tetra Tech, Inc. (Tetra Tech) in 2013.

1.1 Background

Site 7 is located approximately 3,000 feet north of the south gate, near the geographic center of the former NWIRP Calverton, now the Calverton Enterprise Park (**Figure 1**). The principal features of the Site are a large concrete pad that was used for truck unloading and parking along the southern half of the Site and a gravel/soil area where a series of underground storage tanks (USTs) were located along the northern half of the Site. Prior to their removal in 1998, the USTs were used to store jet fuel. A pump house was located along the western edge of the Site. The pump house was used to load trucks that transferred the jet fuel to other areas in the former NWIRP Calverton. The current Site layout is depicted in **Figure 2**.

The 2003 Record of Decision (ROD) for Site 7 indicated a selected remedy of installation and operation of an AS/SVE system. The AS/SVE system was constructed in 2006 and included a series of air sparge and vacuum extraction wells connected by aboveground piping that was connected to the treatment system located in a building in the southeast corner of the Site. The purpose of the AS/SVE system was to remediate residual concentrations of constituents of concern (COCs) in groundwater (TtEC 2007). The AS/SVE system was operated seasonally through 2013, from April to December each year (since the system utilized above-ground piping that was not designed for below freezing operations).

In November 2013, Tetra Tech submitted an evaluation of the Site 7 AS/SVE system entitled, *Performance and Shutdown Evaluation of the Air Sparge / Soil Vapor Extraction System, Site 7 – Former Fuel depot, Naval Weapons Industrial Reserve Plant, Calverton, New York.* This document proposed an interim shutdown of the AS/SVE system in December 2013 to evaluate the overall effectiveness of the remedy. During the shutdown, soil and groundwater data would be collected to determine whether additional treatment at the Site is warranted. The system would remain off while data was collected and evaluated, and a final decision to permanently shut down the system would be made after data evaluation. In accordance with this plan, the system was shut down on 5 November 2013 (shut down occurred a month earlier than planned due to issues with the variable frequency drive (VFD) for Blower 1). The

AS/SVE system remained off-line until it was subsequently decommissioned by others in the latter half of 2015, as detailed under separate cover.

The purpose of this report is to summarize data collected in 2017 and evaluate all data collected during the post shut-down sampling rounds in accordance with the *Performance and Shutdown Evaluation* (Tetra Tech 2013).

2.0 MONITORING

2.1 Groundwater Quality Monitoring

Semiannual groundwater monitoring events were performed on 5-6 April and 10-12 October 2017. Results from both events are presented in this Annual Report. For each event, groundwater samples were collected from the following seven monitoring and SVE wells: MW16S, MW17S, SV2, SV4, SV11/MW40, SV13, and SV15. These wells were chosen based on historical groundwater contaminant concentrations above the 2003 ROD remediation goals or 2013 Proposed Closeout Goals (PCGs) at these locations (Tetra Tech 2013). In addition to the above-mentioned wells, groundwater samples were also collected from four sentry monitoring wells MW07S, MW07I, MW08S, and MW09S to confirm that no off-site contaminant migration was occurring. Monitoring and SVE well locations are shown on **Figure 2**.

2.1.1 Groundwater Elevation Data / Groundwater Flow

Groundwater level measurements were collected from select SVE wells and monitoring wells in April and October 2017, prior to performing groundwater sampling activities. Groundwater elevations were calculated for those wells for which reference elevation data was available. Groundwater level measurements and associated elevation data for the April and October 2017 events are presented in **Tables 1A and 1B**, respectively. Groundwater elevations for the April and October 2017 events are also presented graphically on **Figures 3A and 3B** and were used to determine the direction of groundwater flow. As indicated on **Figures 3A and 3B**, the general direction of groundwater flow is from west to east across the Site. This is consistent with the groundwater flow directions determined during previous events.

2.1.2 Groundwater Quality Results

Field parameters measured during well purging in April and October 2017, consisting of pH, specific conductance (SC), turbidity, temperature, oxidation-reduction potential (ORP) and dissolved oxygen (DO), are summarized in **Tables 2A and 2B**, respectively. Copies of the field logs and chain of custody documentation are presented in **Appendix A**.

Groundwater samples were submitted to a National Environmental Laboratory Accreditation Conference (NELAC) accredited, Department of Defense (DOD) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory: Analytical Laboratories Services, Inc. located in Rochester, NY. Groundwater samples were analyzed for select volatile organic compounds (VOCs): benzene, toluene, ethylbenzene, xylenes (collectively BTEX), naphthalene, and 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113®) by U.S. Environmental Protection Agency (USEPA) Method 8260C. In addition, groundwater samples were also analyzed for one semivolatile organic compound (SVOC), 2-methylnaphthalene, by USEPA Method 8270D, and total lead by USEPA Method 6010C.

Validated analytical results for compounds detected during the April and October 2017 monitoring events are presented in **Tables 3A and 3B**, respectively. Results from both the April and October 2017 events were compared to the 2013 PCGs and concentrations of COCs are summarized as follows:

- Benzene was not detected at any monitoring location during either event.
- Ethylbenzene was detected above the 2013 PCG (5 μg/L) at five locations during the October 2017 event: MW16S (15 μg/L), MW17S (77 μg/L), SV2 (120 μg/L), SV4 (7.6 μg/L), and SV13 (12 μg/L). Ethylbenzene was previously detected above the PCG at four locations during the April 2017 event: MW16S (13 μg/L), MW17S (44 μg/L), SV2 (98 μg/L), and SV4 (6.1 μg/L).
- Toluene was not detected at any monitoring location during either event.
- Total xylenes were detected above the 2013 PCG (5 μg/L) at five locations during the October 2017 event: MW16S (9.2 J μg/L), MW17S (211 J μg/L), SV2 (785 μg/L), SV4 (76 μg/L), and SV13 (56 μg/L). Xylenes were previously detected above the PCG at four locations during the April 2017 event: MW17S (100 μg/L), SV2 (356 J μg/L), SV4 (46 μg/L), and SV13 (11 μg/L).
- Freon[®] 113 was not detected above the 2013 PCG (5 μg/L) at any monitoring location during either event.
- Naphthalene was not detected above the 2013 PCG (50 μg/L) during the October 2017 event.
 Naphthalene was detected above the PCG at one location during the April 2017 event, MW17S (67 μg/L).
- 2-Methyl-naphthalene was not detected above the 2013 PCG (50 μ g/L) at any monitoring location during either event.
- Total lead was not detected above the 2013 PCG (15 μg/L) at any monitoring location during the October 2017 event, and was not detected at any monitoring location in April 2017.

Groundwater analytical results for the October 2017 sampling event are presented graphically as **Figure 4** (monitoring wells) and **Figure 5** (SVE wells). Post-shutdown analytical results from the December 2013 through October 2017 sampling events are also provided on these figures for comparison. Data validation reports and a validated analytical data summary for the April and October 2017 events are presented in **Appendix B.**

2.1.3 Quality Assurance/Quality Control Sampling

Field and laboratory Quality Assurance/ Quality Control (QA/QC) samples were collected during the April and October 2017 sampling events as required by the O&M Manual. These samples consisted of blind field duplicates, matrix spike/matrix spike duplicate (MS/MSD), equipment and field blanks (FB) collected at a rate of one per sampling event, and trip blanks (TB) submitted at a rate of one per sample cooler. No contaminants were detected in the equipment or trip blank samples collected during either sampling event, with exception of toluene which was detected at a low concentration of 0.30 µg/L in the Field Blank sample during the October 2017 event. However, none of the samples collected during the October 2017 had detection of Toluene which indicates that this low detection may be from laboratory contamination or from contamination introduced during sample collection, storage, and transport; otherwise quality control requirements were achieved.

For field duplicate samples, the precision between the original sample and its duplicate is evaluated by calculating the relative percent difference (RPD). RPDs for the April and October 2017 sampling events are presented in the data validation report in **Appendix B**. As indicated, RPDs for all analytes were

below the guideline of 50%, with exception of o-xylene which was reported at a 56.6 % RPD from the duplicate sample (0.68 J μ g/L) over its parent sample MW16S (0.38 J μ g/L). However, for the purpose of this report, only total xylene (o-xylene and m,p-xylene) is calculated and reported in the tables. The overall consistency between the samples and its duplicate verifies that proper sample collection methods were followed.

2.1.4 Groundwater Concentration Trends

Table 4 presents the groundwater analytical results for the seven selected monitoring and SVE wells from December 2013 (first sampling event after system shut-down) through October 2017, along with a comparison of these results to the 2013 PCGs. **Tables 5A and 5B** provide the analytical results since 2006 for all monitoring and SVE wells. **Table 5A** summarizes the data for the 12 monitoring wells and **Table 5B** summarizes the data for the 15 previously active SVE wells.

Appendix C presents concentration trends of the eight COCs (BTEX, Freon® 113, naphthalene, 2-methyl-naphthalene, and lead) analyzed for at each of the seven selected SVE and monitoring wells, from the first sampling event after system shut-down (December 2013), through the most recent round of groundwater sampling (October 2017). Concentration trends of total BTEX (combined) and naphthalene from March 2006 through October 2017 for each of the seven selected SVE and monitoring wells, as well as Freon® 113 for SV11, are presented in **Appendix D**. Concentration trends for the four sentry monitoring wells (MW07I, MW07S, MW08S, and MW09S) are not included, as no contaminants were detected at these locations.

Overall trends from 2006 to the present are provided for reference in **Appendix D**. However, for purposes of this evaluation, only data from the specified wells from December 2013 onward are considered (**Appendix C**).

MW16S

Concentrations of COCs in MW16S initially decreased after December 2013 but have generally remained stable since March 2014 with some variation. The concentrations of ethylbenzene (13 μ g/L and 15 μ g/L), and total xylenes (5.0 J μ g/L and 9.2 J μ g/L) in April and October 2017, were reported above their respective PCGs. Freon 113® was first detected in September 2014 at a concentration of 1.1 J μ g/L and was detected at a maximum concentration of 5.2 μ g/L above its PCG of 5 μ g/L in December 2014. Thereafter, Freon 113® remained either undetected or at low estimated concentrations below its PCG. Concentrations of naphthalene (6.1 μ g/L and 9 J μ g/L) reported in April and October 2017 were below its PCG of 50 μ g/L. Benzene, toluene, and 2-methylnaphtalene remained undetected during the April and October 2017 sampling events. Total lead concentrations decreased from an initial concentration of 41 μ g/L above the PCG of 15 μ g/L in December 2013 to non-detectable levels in March 2016 and a low concentration of 1.1 J μ g/L in October 2016. The concentrations of total lead (2.2 J μ g/L and undetected) were below the PRG during April and October 2017 sampling events.

MW17S

Concentrations of COCs in MW17S have generally remained stable or increased between December 2013 and October 2017, with variation over time. Ethylbenzene and total xylenes have steadily increased since

October 2016 with concentrations of 77 μ g/L and 211 μ g/L respectively during October 2017. This is the highest concentration reported to date for ethylbenzene, while total xylene reported the second highest concentration to date since first sampled in March 2006. Concentrations of 2-methyl-naphthalene have varied, though remain below its PCG. Total lead concentrations decreased to non-detectable levels from September 2015 until March 2016 then increased to an estimated value of 2.4 J μ g/L in April of 2017 before becoming undetected again in October 2017. Freon 113® has been detected at levels below the respective PCG only three of the sampling events, at concentrations of 0.38 J μ g/L in March 2015, 0.83 J μ g/L in June 2015, and 2.0 J μ g/L in September 2015. Concentrations of Freon 113® have remained undetected since December 2015. Well MW17S was not sampled during the October 2016 sampling event due to the presence of LNAPL in the well.

SV2

Concentrations of COCs in SV2 have generally remained stable or variable between December 2013 and October 2017. Concentrations of ethylbenzene (98 μ g/L and 120 μ g/L) and total xylenes (356 μ g/L and 785 μ g/L) observed in April and October 2017 respectively are above their respective PCGs, and greater than initial concentrations observed in December 2013 (98.9 μ g/L and 645 J μ g/L, respectively). Naphthalene was detected below its PCG at concentrations of 23 μ g/L and 33 μ g/L in April and October 2017 respectively. 2-methyl-naphthalene concentrations had increased from 20.2 μ g/L in December 2013 to 52 μ g/L in October 2016, also above the associated PCG; however, 2-methyl-naphalene was detected below its respective PCG during the March 2016 sampling event with a concentration of 40 μ g/L. Concentrations of 2-methyl-naphthalene (undetected and 21 μ g/L) detected in April and October 2017 remain below its PCG of 50 μ g/L. The concentrations of total lead 3.0 J μ g/L and undetected) were below the PRG during April and October 2017 sampling events. Benzene, Freon 113 $^{\$}$, and toluene were not detected during both April and October 2017 sampling events.

SV4

Concentrations of COCs in SV4 have generally remained stable or increased between December 2013 and October 2017. Total xylenes concentrations initially decreased in March 2014 (2.5 µg/L) and June 2014 (1.6 J µg/L) but have since increased to concentrations greater than those observed in December 2013 (5.0 μg/L), to a concentration of 83 μg/L in September 2015, above the PCG. Concentrations subsequently decreased somewhat in December 2015 (41 μg/L) and March 2016 (25 μg/L), but rebounded to a historic maximum concentration of 103 µg/L in October 2016. The current concentrations of total xylenes (46 μg/L and 76 μg/L) remained above the PCG in April and October 2017. Ethylbenzene concentrations have increased from an initial non-detectable concentration observed in December 2013 to a concentration of 12 μg/L in October 2016. Ethylbenzene has since decreased to 6.1 μg/L and 7.6 μg/L in April and October 2017; however, concentrations remain above its PCG. Freon 113[®] was detected at historic maximum (5.8 μg/L), and above its respective PCG, during the October 2016 sampling event. It is important to note that Freon 113® was previously detected at low concentrations ranging from undetectable to 2.6 J µg/L, below the PCG of 5 µg/L. Concentrations of Freon 113® have since returned to the normal range with concentrations of 0.84 J μg/L and 2.10 J μg/L during April and October 2017 sampling events. Benzene and toluene remained undetected since December 2013, while concentrations of naphthalene (19 μg/L and 16 J μg/L) remained below its PCG of 50 μg/L during the April and October 2017 sampling events.

SV11

Concentrations of COCs in SV11 have generally decreased between December 2013 and October 2017, with some variation. The concentrations of Freon 113® during the 2017 sampling events were 4.2 J μ g/L and 2.6 J μ g/L for April and October respectively. Concentrations of Freon 113® observed since October 2016 have dropped below the PCG and have been significantly lower than the historic maximum of 137 μ g/L observed in December 2013. Total xylenes concentrations generally decreased from 9.1 J μ g/L in December 2013 to below the PCG in October 2017 (1.77 J μ g/L). The total xylenes concentration observed in September 2015 (10.4 J μ g/L) was above the PCG, but the concentration observed in subsequent sampling events, remain below the PCG. While COC concentrations continue to trend downward, there were no COCs detected above the PCGs during the April and October 2017 sampling events.

SV13

Concentrations of COCs at SV13 have varied between December 2013 and October 2017. Concentrations of ethylbenzene (12 J μ g/L) and total xylenes (56 J μ g/L) reported during the October 2017 were detected above their respective PCGs. The xylene concentration detected in October 2017 represents a historic maximum value and is greater than the initial value (2.7 J μ g/L) detected in December 2013. The ethylbenzene concentration detected in October 2017 is less than the maximum value (15 μ g/L) detected in March 2015 but is is greater than the initial value (0.40 J μ g/L) detected in December 2013. No other COCs were detected above their respective PCGs during the October 2017 event.

SV15

Concentrations of COCs at SV15 have generally decreased or remained stable between December 2013 and October 2017 with some variation. All COC concentrations reported during the April and October 2017 events were either not detected or below their respective PCGs. In addition, all COCs have been below their PCGs since December 2013 with the exception lead exceedance in March 2015, when a concentration of $15.4 \,\mu g/L$ was observed. Lead has not been detected at this location since March 2015.

MW07S, MW07I, MW08S, MW09S

No detections of COCs were reported at these monitoring wells in April and October 2017, as has historically been the case.

2.1.5 LNAPL Monitoring

Light non-aqueous phase liquid (LNAPL) was encountered during the Fourth Quarter 2016 and the First Quarter 2017 at wells MW16S, MW17S, and MW19S. Weekly monitoring using an oil/water interface probe and a photoionization detector (PID) was initiated in October 2016. LNAPL recovery using a bailer was performed on a weekly basis to recover LNAPL. The LNAPL thickness decreased since first detected in October 2016 to not measurable in March 2017. A summary of measured LNAPL thicknesses are presented below:

MW16S - A maximum LNAPL thickness of 0.60 feet was measured on 11 January 2017.
 LNAPL has not been encountered at this location in measurable quantities since 27 January 2017.

- MW17S A maximum LNAPL thickness of 1.12 feet was measured on 19 October 2016. The LNAPL thickness has decreased at this location and was measured at 0.14 foot on 24 February 2017. LNAPL has not been encountered at this location in measurable quantities since 20 March 2017.
- MW19S A maximum LNAPL thickness of 1.05 feet was measured on 18 November 2016.
 LNAPL has not been encountered at this location in measurable quantities since 27 January 2017.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Groundwater monitoring should be continued. The monitoring program should include monitoring of the seven wells originally identified in *the Performance and Shutdown Evaluation* (Tetra Tech 2013), as well as the four additional sentry wells added in the latter half of 2015. Semiannual monitoring (in the spring and fall seasons) is planned for 2018. In addition, LNAPL gauging should continue to be performed in the event that measurable product is observed.

Monitoring data should continue to be collected and evaluated to determine the necessary course of action required to address remaining COCs at the site. Preparation of a Remedial Alternative Analysis, to be performed by others, should be completed.

4.0 REFERENCES

KOMAN Government Solutions, LLC. (KGS). 2016. 2016 Annual Monitoring Report, AS/SVE System, Former Fuel Depot Area – Site 7, Naval Weapons Industrial Reserve Plant, Calverton, New York. November.

H&S Environmental, Inc. (H&S). 2015. 2015 Annual Monitoring Report, AS/SVE System, Former Fuel Depot Area – Site 7, Naval Weapons Industrial Reserve Plant, Calverton, New York. November.

NAVFAC. 2003. Record of Decision, Operable Unit 2, Soil and Groundwater at Site 7 – Fuel Depot Area, Naval Weapons Industrial Reserve Plant, Calverton, New York. January.

Tetra Tech EC, Inc. (TtEC). 2007. Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparging System at Former Naval Weapons Industrial Reserve Plant Calverton, NY. February.

Tetra Tech, Inc. (Tetra Tech). 2013. Performance and Shutdown Evaluation of the Air Sparge/Soil Vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York. November.

Table 1A

Summary of Groundwater Elevation Data

April 2017

NWIRP Calverton Site 7 Calverton, New York

Well ID	Date	Well Elevation (ft amsl)	Total Measured Well Depth (ft bTOC)	Depth to Water (ft bTOC)	Groundwater Elevation (ft amsl)
MW07S	04/05/17	NRE	22.74	18.84	
MW07I	04/05/17	NRE	44.04	17.98	
MW08S	04/05/17	NRE	22.48	18.27	
MW09S	04/05/17	NRE	22.64	17.87	
MW10S	04/05/17	56.81	22.82	19.90	36.91
MW11S	04/05/17	55.24	28.20	18.34	36.90
MW12S	04/05/17	55.54	28.74	18.81	36.73
MW16S	04/05/17	58.02	25.87	20.74	37.28
MW17S	04/05/17	57.30	25.45	20.08	37.22
SV2	04/05/17	NRE	24.04	19.53	
SV4	04/05/17	NRE	30.24	19.93	
SV11	04/05/17	NRE	29.20	17.92	1
SV13	04/05/17	NRE	28.57	19.91	
SV15	04/05/17	NRE	26.64	16.81	

Notes:

amsl - above mean sea level

ft - feet

bTOC - below top of casing

-- - Not Applicable

NRE - No reference elevation available

Table 1B Summary of Groundwater Elevation Data October 2017

NWIRP Calverton Site 7 Calverton, New York

Well ID	Date	Well Elevation (ft amsl)	Total Measured Well Depth (ft bTOC)	Depth to Water (ft bTOC)	Groundwater Elevation (ft amsl)
MW07S	10/10/17	NRE	22.95	18.96	
MW07I	10/10/17	NRE	43.70	18.14	i==.
MW08S	10/10/17	NRE	22.21	18.28	
MW09S	10/10/17	NRE	22.21	17.95	
MW10S	10/10/17	56.81	22.85	19.95	36.86
MW11S	10/10/17	55.24	28.25	18.43	36.81
MW12S	10/10/17	55.54	28.96	18.70	36.84
MW16S	10/10/17	58.02	25.74	20.83	37.19
MW17S	10/10/17	57.30	25.43	20.13	37.17
SV2	10/10/17	NRE	23.45	20.02	
SV4	10/10/17	NRE	29.94	20.06	
SV11	10/10/17	NRE	29.20	17.98	
SV13	10/10/17	NRE	28.61	19.91	
SV15	10/10/17	NRE	26.65	16.89	

Notes:

amsl - above mean sea level

ft - feet

bTOC - below top of casing

-- - Not Applicable

NRE - No reference elevation available

Table 2A

Summary of Groundwater Chemistry Results

April 2017

NWIRP Calverton Site 7

Calverton, New York

Location	Date	Temp (°C)	pH (SU)	S.C. (μS/cm3)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Color (Visual)
MW07S	4/5/2017	12.15	5.14	47.0	9.08	-264.1	4.67	clear
MW07I	4/5/2017	12.97	5.88	98.0	0.67	-243.2	0.38	clear
MW08S	4/5/2017	12.57	4.34	83.0	7.69	-209.3	4.57	clear
MW09S	4/5/2017	12.83	5.76	96.0	2.18	-245.4	2.68	clear
MW16S	4/6/2017	15.44	6.15	263.0	0.31	-221.1	0.73	clear
MW17S	4/6/2017	15.33	6.14	423.0	0.17	-223.0	0.18	clear
SV2	4/6/2017	17.06	5.86	252.0	0.46	-230.1	39.10	clear
SV4	4/6/2017	14.40	6.14	185.0	9.02	-146.2	3.97	clear
SV11	4/6/2017	15.72	6.19	183.0	3.26	-127.2	5.17	clear
SV13	4/5/2017	15.63	5.96	218.0	0.43	-277.3	1.96	clear
SV15	4/6/2017	15.46	6.00	236.0	12.03	-124.3	7.21	clear

Notes:

mS/cm = milliSiemens per centimeter

NTU = nephelometric turbidity units

mg/L = milligrams per liter

°C = degrees celsius

mV = millivolts

SU = standard units

ORP = oxidation/reduction potential

Table 2B

Summary of Groundwater Chemistry Results

October 2017

NWIRP Calverton Site 7

Calverton, New York

Location	Date	Temp (°C)	pH (SU)	S.C. (μS/cm3)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Color (Visual)
MW07S	10/10/2017	14.09	3.90	47.0	7.85	-75.9	1.32	Clear
MW07I	10/12/2017	12.48	5.60	126.0	0.01	-195.1	0.89	Clear
MW08S	10/10/2017	13.40	3.84	78.3	8.81	317.9	1.05	Clear
MW09S	10/10/2017	14.72	5.68	138.0	1.42	-146.7	0.75	Clear
MW16S	10/11/2017	17.10	5.85	235.1	0.16	-49.7	1.05	Clear
MW17S	10/10/2017	17.38	5.97	366.0	6.09	-169.5	0.70	Clear
SV2	10/10/2017	17.50	5.65	241.0	0.19	-60.2	2.65	Clear
SV4	10/11/2017	17.02	5.78	277.0	0.06	-159.7	2.68	Clear
SV11	10/11/2017	17.03	5.25	123.0	2.30	-143.5	2.42	Clear
SV13	10/11/2017	15.47	5.91	165.0	4.07	-156.3	9.88	Clear
SV15	10/11/2017	17.60	5.90	222.3	1.34	-79.6	5.94	Clear

Notes:

mS/cm = milliSiemens per centimeter

NTU = nephelometric turbidity units

mg/L = milligrams per liter

°C = degrees celsius

mV = millivolts

SU = standard units

ORP = oxidation/reduction potential

Table 3A Summary of Groundwater Analytical Results April 2017 NWIRP Calverton Site 7 Calverton, New York

				SVOCs (Method 8270)	Metals (Method 6010)				
Well ID	Date Sampled	Benzene	Ethyl- benzene	Freon 113	Naph- thalene	Toluene	Total Xylenes	2-Methyl- naphthalene	Total Lead
2013 Proposed Cl	oseout Goal (1)	5	5	5	50	5	5	50	15
MW07S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	5.6 U	2.5 U
MW07I	4/5/2017	1.0 U	1.0 U	1.0 U	5.5	1.0 U	1.3 J	5.0 U	2.5 U
MW08S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW09S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW16S	4/6/2017	1.0 U	13	1.2 J	6.1	1.0 U	5.0 J	5.0 U	2.2 J
MW17S	4/6/2017	1.0 U	44	1.0 U	67	1.0 U	100	32	2.4 J
SV2	4/6/2017	2.0 U	98	2.0 U	23	2.0 U	356	5.0 U	3.0 J
DUP-1 (SV13)	4/5/2017	1.0 U	4.4 J	1.0 U	5.8	1.0 U	12	1.5 J	2.5 U
SV4	4/6/2017	1.0 U	6.1	0.84 J	19	1.0 U	46	5.0 U	3.6 J
SV11/MW40S	4/6/2017	1.0 U	1.0 U	4.2 J	1.0 U	1.0 U	0.24 J	5.0 U	2.5 U
SV13	4/5/2017	1.0 U	3.9 J	1.0 U	5.0 J	1.0 U	11	1.2 J	2.5 U
SV15	4/6/2017	1.0 U	1.0 U	1.4 J	1.0 U	1.0 U	2.0 U	5.0 U	2.5 U

Notes:

U - Not detected above laboratory detection limit (DL). Value given is limit of detection (LOD).

J - Estimated value

NA - Not sampled / analyzed for associated parameter

VOC - volatile organic compound

SVOC - semi-volatile organic compound

All values presented in micrograms per liter (µg/L).

Bold values indicate detections. Shading indicates detections in exceedance of the 2013 Proposed Closeout Goal.

¹Clean-up criteria taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Table 3B Summary of Groundwater Analytical Results October 2017 NWIRP Calverton Site 7 Calverton, New York

				SVOCs (Method 8270)	Metals (Method 6010)				
Well ID	Date Sampled	Benzene	Ethyl- benzene	Freon 113	Naph- thalene	Toluene	Total Xylenes	2-Methyl- naphthalene	Total Lead
2013 Proposed Clos	seout Goal ⁽¹⁾	5	5	5	50	5	5	50	15
MW07S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW07I	10/12/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW08S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW09S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW16S	10/11/2017	1.0 U	15	1.0 U	9.0	1.0 U	9.2 J	5.0 U	5.0 U
MW17S	10/10/2017	1.0 U	77	1.0 U	30	1.0 U	211 J	5.1 J	5.0 U
SV2	10/10/2017	2.0 U	120	2.0 U	33	2.0 U	785	21	5.0 U
DUP-1 (MW16S)	10/11/2017	1.0 U	17	1.0 U	10	1.0 U	11 J	3.2 J	5.0 U
SV4	10/11/2017	1.0 U	7.6	2.1 J	16	1.0 U	76	9.7	5.0 U
SV11/MW40S	10/11/2017	1.0 U	1.0 U	2.6 J	2.7 J	1.0 U	1.77 J	5.0 U	5.0 U
SV13	10/11/2017	1.0 U	12	1.0 U	15	1.0 U	56	5.0 U	5.0 U
SV15	10/11/2017	1.0 U	1.0 U	2.6 J	0.67 J	1.0 U	3.0 U	5.0 U	5.0 U

Notes:

U - Not detected above laboratory detection limit (DL). Value given is limit of detection (LOD).

J - Estimated value

NA - Not sampled / analyzed for associated parameter

VOC - volatile organic compound

SVOC - semi-volatile organic compound

All values presented in micrograms per liter ($\mu g/L$).

Bold values indicate detections. Shading indicates detections in exceedance of the 2013 Proposed Closeout Goal.

¹Clean-up criteria taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Table 4 Summary of Groundwater Analytical Results December 2013 - October 2017 NWIRP Calverton Site 7 Calverton, New York

					VOCs (M	Tethod 8260)				SVOCs (Method 8270)	Metals (Method 6010)
Well ID	Date Sampled	Benzene	Ethyl- benzene	Freon 113	Naph- thalene	Toluene	m,p-xylene	o-xylene	Total Xylenes	2-Methyl- naphthalene	Total Lead
2013 Proposed Clo	seout Goal (1)	5	5	5	50	5			5	50	15
NAME OF THE PROPERTY OF THE PR	0/16/2015										
MW07S MW07S	9/16/2015	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.4 U
MW07S	3/23/2016	1.0 U	1.0 U	1.0 U	1.0 U 1.0 UJ	1.0 U 1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	2.0 U	5.0 U	2.5 U
MW07S	10/5/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U 3.0 U	5.0 U 5.0 U	2.5 U 1.5 U
MW07S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.6 U	2.5 U
MW07S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	5.0 U
											2,10
MW07I	9/16/2015	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.2 U
MW07I	12/2/2015	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW07I	3/23/2016	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW07I MW07I	10/5/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	1.5 U
MW07I	4/5/2017 10/12/2017	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	5.5 1.0 U	1.0 U	2.0 U	1.3 J	3.3 J	5.0 U	2.5 U
1110/1	10/12/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW08S	9/16/2015	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW08S	12/2/2015	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW08S	3/24/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW08S	10/5/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	1.5 U
MW08S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW08S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	5.0 U
MW09S	0/16/2015	1011	10.11	1011	1077	1011	2011				
MW09S	9/16/2015 12/2/2015	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.2 U
MW09S	3/24/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	2.0 U	5.0 U	2.5 U
MW09S	10/5/2016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U 3.0 U	5.0 U 5.0 U	2.5 U 1.5 U
MW09S	4/5/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
MW09S	10/10/2017	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	5.0 U
											210 0
MW16S	12/9/2013	1.0 U	16.9	1.0 U	14.3 J	0.25 J	9.1	0.26 J	64.1	1.9 U	41
MW16S	3/26/2014	1.0 U	9.8	1.0 U	8.7	1.0 U	9.1	0.26 J	9.4	1.2 J	1.5 U
MW16S	6/18/2014	1.0 U	17	1.0 U	14	0.22 J	26	1.0 U	26	7.3 J	1.8 J
DUP-1 (MW16S) MW16S	6/18/2014 9/24/2014	1.0 U 1.0 U	6.6	1.0 U	13	1.0 U	23	1.0 U	23	3.6 J	1.1 J
MW16S	12/16/2014	1.0 U	12	1.1 J 5.2	7.0 2.2 J	1.0 U 1.0 U	15 4.3 J	0.43 J 1.0 U	15 4.3 J	6.7 J	2.5 U
MW16S	3/18/2015	1.0 U	5.8	0.83 J	5.6	1.0 U	13	1.0 U	4.3 J	1.2 J 4.4 J	3.3 J 2.5 U
MW16S	6/24/2015	1.0 U	14	1.0 U	12	1.0 U	35	0.61 J	36	9.1 J	2.5 U
MW16S	9/17/2015	1.0 U	5.4	0.41 J	5.1	1.0 U	13	1.0 U	14	9.6	4.7 U
MW16S	12/3/2015	1.0 U	12	1.0 UJ	12	0.21 J	23 J	1.0 U	23 J	11	2.5 U
DUP-1 (MW16S)	12/3/2015	1.0 U	9.6	0.51 J	12	0.20 J	16 J	1.0 U	16 J	11	2.5 U
MW16S	3/24/2016	1.0 U	22	1.0 U	13	1.0 U	23	1.0 U	23	3.0 J	2.5 U
MW16S	10/6/2016	1.0 U	36	2.3 J	55	1.0 U	42	1.0 U	42	16.0	1.1 J
MW16S	4/6/2017	1.0 U	13	1.2 J	6.1	1.0 U	4.7 J	0.32 J	5.0 J	5.0 U	2.2 J
MW16S	10/11/2017	1.0 U	15	1.0 U	9.0	1.0 U	8.8	0.38 J	9.2 J	5.0 U	5.0 U
DUP-1 (MW16S)	10/11/2017	1.0 U	17	1.0 U	10	1.0 U	10	0.68 J	11 J	3.2 J	5,0 U
MW17S	12/10/2013	1.0 U	7.1	1.0 U	22.7 J	0.25 J	35	0.65 J	10.3	1.9 U	18
MW17S	3/26/2014	1.0 U	17	1.0 U	41	0.20 J	35	0.65 J	36	5.0 J	13.1
MW17S	6/18/2014	1.0 U	22	1.0 U	40	0.21 J	38	0.39 J	38	9.4 J	10.8
MW17S	9/24/2014	1.0 U	12	1.0 U	28 J	0.20 J	30	0.40 J	30	23	6.0
DUP-1 (MW17S)	9/24/2014	1.0 U	12	1.0 U	32	0.21 J	37	0.38 J	37	22	6.3
MW17S	12/16/2014	1.0 U	22	1.0 U	36	1.0 U	68	1.2 J	69	8.3 J	3.7 J
MW17S	3/18/2015	1.0 U	11	0.38 J	17	1.0 U	23	1.0 U	23	5.0 U	2.6 J
MW17S	6/24/2015	1.0 U	9.5	0.83 J	38	1.0 U	30	0.46 J	30	23	2.8 J
MW17S	9/17/2015	1.0 U	17	2.0 J	27	1.0 U	49	0.59 J	50 J	27	8.1 U
MW17S MW17S	12/3/2015 3/24/2016	1.0 U 1.0 U	24 50	1.0 U 1.0 U	55 41	0.20 J 1.0 U	30 51	0.53 J 0.57 J	31 J	23	4.7 U
									52		2.5 U
	Oct-16	NA I	NA	I NA I	NΔ	NΔ	NA I	NA I	NA	I NA	
MW17S MW17S	Oct-16 4/6/2017	NA 1.0 U	NA 44	NA 1.0 U	NA 67	NA 1.0 U	NA 98	NA 2.0 J	NA 100	NA 32	NA 2.4 J

Table 4 Summary of Groundwater Analytical Results December 2013 - October 2017 NWIRP Calverton Site 7 Calverton, New York

Well ID	Date Sampled	Benzene	Ethyl- benzene	Freon 113	Naph- thalene	Toluene	m,p-xylene	o-xylene	Total Xylenes	2-Methyl- naphthalene	Total Lead
SV2	12/12/2013	1.0 U	98.9	1.0 U	28.2 J	1.4	240	35	645 J	20.2	26
DUP-1 (SV2)	12/12/2013	1.0 U	102	1.0 U	29.6 J	1.4	240	35	626	20.4	33
SV2	3/27/2014	1.0 U	140	1.0 U	24	0.77 J	240	35	275	42	0.813 U
SV2	6/18/2014	1.0 U	130	1.0 U	26	1.0 J	360	32	392	58	2.5 U
SV2	9/24/2014	2.5 U	140	2.5 U	37	1.6 J	630	96	726	83	2.5 U
SV2	12/16/2014	2.5 U	160	2.5 U	33	1.2 J	760	78	838	70	2.5 U
SV2 DUP-1 (SV2)	3/18/2015	1.0 U	160	1.0 U	33	0.98 J	840	81	921	60	2.5 U
SV2	3/18/2015	1.0 U	170	1.0 U	37	0.88 J	790	76	866	62	2.5 U
SV2 SV2	6/24/2015 9/17/2015	5.0 U 5.0 U	210	5.0 U	36	1.4 J	1200	82	1282	56	2.5 U
SV2 SV2	12/3/2015	5.0 U	220 310	5.0 U	51	1.4 J	1500	130	1630	69	3.0 U
SV2 SV2	3/24/2016	2.0 U	210	5.0 U	71	5.0 U	1400	43	1443	5.0 U	2.5 U
DUP-1 (SV2)	3/24/2016	1.0 U	170	3.4 J 3.5 J	38 41	2.0 U	470 J	40	510 J	40	2.5 U
SV2	10/6/2016	1.0 U	390	5.0 U	66	0.38 J	300 J	39	339 J	45	2.5 U
SV2	4/6/2017	2.0 U	98	2.0 U	23	5.00 U	1900	49	1949	52	1.5 U
SV2	10/10/2017	2.0 U	120	2.0 U	33	2.0 U 2.0 U	310 750	46 35	356	5.0 U	3.0 J
5,2	10/10/2017	2.0 0	120	2.0 0	33	2.0 0	/50	35	785	21.0	5.0 U
SV4	12/12/2013	1.0 U	1.0 U	1.0 U	17.4 J	1.0 U	1.1 J	1.4	5.0	1.9 U	2.5
SV4	3/27/2014	1.0 U	1.9	1.0 U	7.0	1.0 U	1.1 J	1.4	2.5	6.7 J	2.5
SV4	6/18/2014	1.0 U	1.7 J	0.45 J	7.1	1.0 U	0.92 J	0.70 J	1.6 J	6.7 J 4.3 J	1.9 U 1.1 J
SV4	9/24/2014	1.0 U	4.6 J	2.6 J	14	1.0 U	7.2	4.1 J	110 3	4.5 J	2.0 U
SV4	12/16/2014	1.0 U	5.2	0.41 J	11	1.0 U	10	4.1 J	14	4.3 J	0.906 J
SV4	3/18/2015	1.0 U	8.2	0.77 J	7.4	1.0 U	20	8.9	29	5.9 J	2.5 U
SV4	6/24/2015	1.0 U	8.7	1.6 J	9.3	1.0 U	30	13	43	7.7 J	2.5 U
DUP-1 (SV4)	6/24/2015	1.0 U	8.8	1.4 J	11	1.0 U	30	13	43	7.5 J	2.5 U
SV4	9/17/2015	1.0 U	11	1.0 J	12	1.0 U	66	17	83	11	2.5 U
SV4	12/3/2015	1.0 U	6.9	0.44 J	5.3	1.0 U	36	5	41	6.6 J	2.5 U
SV4	3/23/2016	1.0 U	4.9 J	1.0 U	4.3 UJ	1.0 U	21	4.2 J	25	1.0 U	2.5 U
SV4	10/6/2016	1.0 U	12	5.8	10	5.0 U	95	8.4	103	4.6 J	5.0 J
SV4	4/6/2017	1.0 U	6.1	0.84 J	19	1.0 U	33	13	46	5.0 U	3.6 J
SV4	10/11/2017	1.0 U	7.6	2.10 J	16	1.0 U	62	14	76	9.7	5.0 U
									, ,	71.	3.0 0
SV11/MW40S	12/12/2013	5.0 U	1.8 J	137	23.6 J	3.2 J	3.8	4.7	9.1 J	1.9 U	9.5
SV11/MW40S	3/27/2014	1.0 U	1.2	52 J	9.1	0.64 J	3.8	4.7	8.5	2.6 J	1.1 U
DUP-1 (SV11)	3/27/2014	1.0 U	0.86 J	36 J	7.9	0.48 J	3.0	3.8	6.8	2.5 J	1.9 U
SV11/MW40S	6/18/2014	1.0 U	0.27 J	31	2.7 U	0.28 J	0.55 J	0.80 J	1.4 J	5.0 U	2.5 U
SV11/MW40S	9/24/2014	1.0 U	0.54 J	32	6.9	0.78 J	2.8 J	3.1 J	5.9 J	5.0 U	2.5 U
SV11/MW40S	12/16/2014	1.0 U	0.21 J	15	2.6 J	1.0 U	0.93 J	1.1 J	2.0 J	5.0 U	2.5 U
SV11/MW40S	3/18/2015	1.0 U	0.27 J	8.8	0.84 U	1.0 U	0.60 J	0.55 J	1.2 J	5.0 U	2.5 U
SV11/MW40S	6/24/2015	1.0 U	0.20 J	11	1.8 U	0.27 J	0.61 J	1.1 J	1.7 J	5.0 U	2.5 U
SV11/MW40S	9/17/2015	1.0 U	0.93 J	38 J	9.6	0.47 J	5.1 J	5.3 J	10.4 J	3.7 J	1.7 U
DUP-1 (SV11)	9/17/2015	1.0 U	0.68 J	28 J	7.3	0.33 J	3.6 J	3.9 J	7.5 J	3,6 J	4.4 U
SV11/MW40S	12/2/2015	1.0 U	0.36 J	15	2.9 U	0.21 J	1.4 J	1.4 J	2.8 J	1.1 J	2.5 U
SV11/MW40S	3/23/2016	1.0 U	0.24 J	11	1.3 UJ	0.24 J	0.47 J	0.92 J	1.4 J	5.0 U	2.5 U
SV11/MW40S	10/5/2016	1.0 U	0.50 J	3.9 J	4.3 J	2.00 U	0.47 J	1.70 J	2.2	5.0 U	1.5 U
SV11/MW40S	4/6/2017	1.0 U	1.0 U	4.2 J	1.0 U	1.0 U	2.0 U	0.24 J	0.24 J	5.0 U	2.5 U
SV11/MW40S	10/11/2017	1.0 U	1.0 U	2.6 J	2.7 J	1.0 U	0.67 J	1.10 J	1.77 J	5.0 U	5.0 U
SV13	12/11/2013	1.0 U	0.40 J	1.0 U	2.0 UJ	1.0 U	14	8.9	2.7 J	1.9 U	2.2 U
SV13	3/26/2014	1.0 U	8.7	1.0 U	4.4	1.4	14	8.9	23	5.0 U	0.813 U
SV13	6/18/2014	1.0 U	8.5	1.0 U	6.6	0.89 J	11	6.9	18	1.0 J	2.5 U
SV13	9/24/2014	1.0 U	9.2	1.0 U	7.0	1.1 J	17	7.6	25	9.7	2.5 U
SV13	12/16/2014	1.0 U	6.2	1.0 U	4.0 J	0.25 J	11	2.4 J	13	5.0 U	2.5 U
DUP-1 (SV13)	12/16/2014	1.0 U	6.2	1.0 U	4.8 J	0.21 J	11	2.4 J	13	5.0 U	2.5 U
SV13	3/17/2015	1.0 U	15	1.0 U	7.5	1.0 J	20	8.2	28	5.0 U	2.5 U
SV13	6/24/2015	1.0 U	7.9	1.0 U	6.6	0.72 J	13	4.9 J	18	5.0 U	2.5 U
SV13	9/16/2015	1.0 U	6.1	1.0 U	4.9 J	0.30 J	14	3.0 J	17 J	5.0 U	1.9 U
SV13	12/2/2015	1.0 U	1.8 J	1.0 U	1.4 U	1.0 U	2.0 J	0.68 J	2.7 J	5.0 U	2.5 U
SV13	3/23/2016	1.0 U	12	1.0 U	4.5 UJ	0.33 J	14	8.1	22	5.0 U	2.5 U
SV13	10/5/2016	1.0 U	3.2 J	1.0 U	0.7 J	1.00 U	2.3 J	1.9 J	4.2	5.0 U	1.5 U
SV13	4/5/2017	1.0 U	3.9 J	1.0 U	5.0 J	1.0 U	5.9	5.4	11	1.2 J	2.5 U
DUP-1 (SV13)	4/5/2017	1.0 U	4.4 J	1.0 U	5.8	1.0 U	6.1	5.8	12	1.5 J	2.5 U
SV13	10/11/2017	1.0 U	12	1.0 U	15	1.0 U	26	30	56	5.0 U	5.0 U

Table 4

Summary of Groundwater Analytical Results December 2013 - October 2017 **NWIRP Calverton Site 7** Calverton, New York

Well ID	Date Sampled	Benzene	Ethyl- benzene	Freon 113	Naph- thalene	Toluene	m,p-xylene	o-xylene	Total Xylenes	2-Methyl- naphthalene	Total Lead
SV15	12/12/2013	1.0 U	1.0 U	0.77 J	2.0 UJ	1.0 U	2.0 U	1.0 U	2.0 UJ	9.8	1.1 J
SV15	3/27/2014	1.0 U	1.0 U	0.63 J	1.2	1.0 U	2.0 U	1.0 U	2.0 U	9.0 J	0.813 U
SV15	6/18/2014	1.0 U	1.0 U	0.39 J	0.49 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	1.7 J
SV15	9/24/2014	1.0 U	1.0 U	0.40 J	0.88 U	1.0 U	2.0 U	1.0 U	2.0 U	1.4 J	2.5 U
SV15	12/16/2014	1.0 U	1.0 U	1.0 U	0.63 J	1.0 U	2.0 U	1.0 U	2.0 U	4.0 J	2.5 U
SV15	3/18/2015	1.0 U	1.0 U	1.0 U	0.36 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	15.4
SV15	6/24/2015	1.0 U	1.0 U	1.0 U	0.38 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
SV15	9/17/2015	1.0 U	1.0 U	1.0 U	0.27 J	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	3.7 U
SV15	12/2/2015	1.0 U	1.0 U	1.0 U	0.34 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
SV15	3/23/2016	1.0 U	1.0 U	0.62 J	0.53 UJ	1.0 U	2.0 U	1.0 U	2.0 U	3.4 J	2.5 U
SV15	10/5/2016	1.0 U	1.0 U	1.00 U	1.00 U	1.0 U	1.0 U	2.0 U	3.0 U	5.0 U	1.5 U
SV15	4/6/2017	1.0 U	1.0 U	1.4 J	1.0 U	1.0 U	2.0 U	1.0 U	2.0 U	5.0 U	2.5 U
SV15	10/11/2017	1.0 U	1.0 U	2.6 J	0.67 J	1.0 U	2.0 U	1.0 U	3.0 U	5.0 U	5.0 U

Notes:
U - Not detected above laboratory detection limit (DL). Value given is limit of detection (LOD).

J - Estimated value

NA - Not sampled / analyzed for associated parameter

NA - Not sampled / analyzed for associated parameter
VOC - volatile organic compound
SVOC - semi-volatile organic compound
All values presented in micrograms per liter (µg/L).
Bold values indicate detections. Shading indicates detections in exceedance of the 2013 Proposed Closeout Goal.

¹Clean-up criteria taken from the Performance and Shutdown Evaluation of the Air Sparge Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed						MW04S				MARI	100
Consuttient	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/30/2006	6/20/2006	8/29/2006	10/31/2006	1/11/2007	3/8/2007	6/20/2007	9/18/2007	12/17/2007	3/17/2008	6/23/2008
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	89.9	ND	ND	ND	ND	13.5	ND	ND	ND	17.9	ND
Freon 113	5	5	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	30.7	ND	ND	ND	ND	1.3J	ND	ND	ND	5.2	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	225.0	ND	ND	ND	ND	24.5	ND	ND	ND	53.2	ND

Constituent	2003 ROD Remediation	2013 Proposed	12000	-				MW04S					6575
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/15/2008	3/25/2009	12/15/2009	3/1/2010	12/15/2010	4/14/2011	12/7/2011	3/28/2012	12/5/2012	4/2/2013	12/12/2013
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	2.6	ND	2.0	51.1	2.4	2.4	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	0.64 J	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	1.1J	ND	ND	4.9 J	3.3	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	2.5	39.7	ND	ND	ND	0.72J	ND	ND

Notes:

ND - not detected above laboratory detection limit J - Estimated value
All values presented in micrograms per liter (µg/L)

Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction NWIRP = Naval Weapons Industrial Reserve Plant

- (1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra
- (2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed					S A STATE	MW07S					
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/30/2006	6/20/2006	8/29/2006	10/30/2006	1/11/2007	3/8/2007	6/21/2007	9/19/2007	12/18/2007	3/18/2008	6/25/2008
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49J
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7 J
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

	2003 ROD Remediation	2013 Proposed						MW07S					1
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/15/2008	3/25/2009	12/15/2009	3/2/2010	8/25/2010	10/13/2010	1/2/2011	4/14/2011	12/7/2011	3/28/2012	12/6/2012
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	0.43J	ND	0.30	0.51J	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Constituent	2003 ROD Remediation	2013 Proposed				MW	/07S			
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	4/3/2013	12/12/2013	9/16/2015	12/2/2015	3/23/2016	10/5/2016	4/5/2017	10/10/2013
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

ND - not detected above laboratory detection limit

J - Estimated value

All values presented in micrograms per liter (µg/L)

Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction

- (1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra Tech EC, Inc.
- (2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed							MW10S		117-5	1000			1000
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/30/2006	6/20/2006	8/29/2006	10/30/2006	1/11/2007	3/8/2007	6/21/2007	9/19/2007	12/18/2007	3/18/2008	6/25/2008	9/10/2008	12/15/2008
Benzene	1	5	ND	ND	3.0	5.6	ND	2.1	2.4	0.89J	ND	0.47J	ND	0.46J	ND
Ethylbenzene	5	5	89.5	121.0	86.1	202.0	42.2	148.0	193.0	64.1	75.0	104.0	130.0	70.5	140.0
Freon 113	5	5	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22J
Naphthalene	10	50	63.2	41.0	89.2	77.3	21.6	40.6	59.6	22.3	26.3	37.9	76.9	54.7	71.8
Toluene	5	5	3.8	8.5	10.6	5.0	ND	1.3	5.8	3.0	1.3	1.1	3.9	3.5	7.7
Total Xylenes	5	5	209.0	264.0	189.0	399.0	15.5	16.0	130.0	31.6	82.3	192.0	342.0	159.0	355.0

C	2003 ROD Remediation	2013 Proposed			43320	1	Ed all	MW	V10S	5 13 5			100	300
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/25/2009	12/15/2009	3/2/2010	8/25/2010	10/13/2010	12/15/2010	4/14/2011	12/7/2011	3/28/2012	12/6/2012	4/3/2013	12/12/2013
Benzene	1	5	ND	0.34	0.42 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	130.0	64.9	79.0	120.0	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	71.3	27.5	31.1	31.0	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	7.7	1.0	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	296.0	136	180	190	ND	ND	ND	ND	ND	ND	ND	ND

Notes: ND - not detected above laboratory detection limit J - Estimated value

J - Estimated value
All values presented in micrograms per liter (μg/L)
Bold values equal or exceed the clean-up criteria.
SVE = soil vapor extraction
NWIRP = Naval Weapons Industrial Reserve Plant

(1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007)

prepared by Tetra Tech EC, Inc.
(2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed	-					MV	V11S					
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/30/2006	6/20/2006	8/29/2006	10/30/2006	1/11/2007	3/8/2007	6/21/2007	9/19/2007	12/18/2007	3/18/2008	6/25/2008	9/10/2008
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	3.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.5	19.2
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J	ND	10.1	7.3
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	9.7

Constituent	2003 ROD Remediation	2013 Proposed						MW11S		210		17.76	
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/15/2008	3/25/2009	12/15/2009	3/2/2010	12/15/2010	4/14/2011	12/7/2011	3/28/2012	12/6/2012	4/3/2013	12/12/2013
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	12.6	20.4	5.6	2.1	ND	ND	2.2	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	9.0	0.75 J	7.00	1.1 J	ND	ND	1.5 J	ND	ND	ND	ND
Toluene	5	5	0.24J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	6.2	ND	6.90	1.4	ND	ND	ND	ND	ND	ND	ND

Notes:

ND - not detected above laboratory detection limit

J - Estimated value

All values presented in micrograms per liter (µg/L)

Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction

- (1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra Tech EC, Inc.
- (2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed			FIZE						MW	V16S	- 20 20	1000		9.357		3349 h	HALL S	B.Z. C
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/27/2006	6/20/2006	8/28/2006	10/31/2006	1/11/2007	3/5/2007	6/20/2007	9/20/2007	12/17/2007	3/19/2008	6/24/2008	9/8/2008	12/15/2008	3/24/2009	12/14/2009	3/1/2010	12/15/2010	4/14/2011
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	34.5	ND	ND	ND	ND	ND	ND	ND	ND	14.0	5.2	ND	ND	12.7	0.37	7.9	0.37 J	2.8
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	54.6	ND	ND	ND	ND	ND	ND	ND	ND	17.6	1.3 J	ND	ND	13.2	ND	7.9	ND	2.4
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	9.1	ND	ND	ND	ND	ND	ND	0.41 J	ND	25.1	9.5	ND	ND	31.5	1.40	28.5	0.78 J	6,6

Constituent	2003 ROD Remediation	2013 Proposed		100			Carlotte.		AND A	2000	MW	/16S	15 25	3000		E CA		North Control	200 3/1	76.71
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/7/2011	3/27/2012	12/5/2012	4/2/2013	12/12/2013	3/26/2014	6/18/2014	9/24/2014	12/16/2014	3/18/2015	6/24/2015	9/17/2015	12/3/2015	3/24/2016	10/6/2016	4/6/2017	10/11/2017	10/11/2017 (DUP-1)
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Ethylbenzene	5	5	1.4	1.6	5.8	ND	16.9	9.8	17	6.6	12	5.8	14	5.4	12	22	36	13	15	17
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	1.1 J	5.2	0.83 J	ND	0.41 J	ND	ND	2.3 J	1.2 J	ND	ND
Naphthalene	10	50	1.2 J	1.5 J	10.2	5.0 J	14.3 J	8.7	14	7.0	2.2 J	5.6	12	5.1	12	13	55	6.1	9	10
Toluene	5	5	ND	ND	ND	ND	0.25 J	ND	0.22 J	ND	ND	ND	ND	ND	0.21 J	ND	ND	ND	ND	ND
Total Xylenes	5	5	5.3	4.9	18.0	ND	64.1	9.4	26	15	4.3 J	13	36	14	23 J	23	42	5.0 J	9.2 J	11 J

Notes: ND - not detected above laboratory detection limit J - Estimated value All values presented in micrograms per liter ($\mu g/L$) Bold values equal or exceed the clean-up criteria. SVE = soil vapor extraction NWIRP = Naval Weapons Industrial Reserve Plant

(1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007)

prepared by Tetra Tech EC, Inc.
(2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed						VIII.		14-14	MW17S				15 100	647		(S. C. C.	(P. P.)
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/27/2006	6/20/2006	8/28/2006	10/31/2006	1/11/2007	3/5/2007	6/20/2007	9/20/2007	12/17/2007	3/19/2008	6/24/2008	9/8/2008	12/15/2008	3/24/2009	12/14/2009	3/1/2010	12/14/201
Benzene	1	5	4.8	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	70.6	22.2	5.6	7.8	2.1	16.9	29.2	26.0	25.1	26.6	17.0	30.4	10.5	12.8	2.90	0.99 J	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	69.5	38.5	ND	20.3	4.7	29.3	70.0	81.1	78.3	60.6	54.4	114.0	30.3	34.1	12.50	6.80	4.7 J
Toluene	5	5	ND	1.9	1.2	ND	ND	ND	0.44J	0.34J	ND	ND	0.59 J	0.57 J	0.25 J	0.33 J	0.32	ND	ND
Total Xylenes	5	5	179.0	75.0	24.2	38.4	9.3	35.8	90.3	84.6	78.8	59.3	53.6	92.1	23.3	39.2	14.00	7.20	1.70

Constituent	2003 ROD Remediation	2013 Proposed			4	HUE					MW17S	1.0.3	A STATE OF	84407	4316	1600	90-11-86	1000	400
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	4/14/2011	12/7/2011	3/27/2012	12/5/2012	4/2/2013	12/12/2013	3/26/2014	6/18/2014	9/24/2014	12/16/2014	3/18/2015	6/24/2015	9/17/2015	12/3/2015	3/24/2016	4/6/2017	10/11/2017
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	2.7	0.78 J	4.2	9.2	4.7	7.1	17	22	12	22	11	9.5	17	24	50	44	77
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	0.83 J	2.0 J	ND	ND	ND	ND
Naphthalene	10	50	19.3	2.1 J	14.9	28.8	13.4 J	22.7 J	41	40	28 J	36	17	38	27	55	41	67	30
Toluene	5	5	ND	ND	ND	ND	ND	0.25 J	0.20 J	0.21 J	0.20 J	ND	ND	ND	ND	0.20 J	ND	ND	ND
Total Xylenes	5	5	5.0	3.0	14.2	47.5	12.1	10.3	36	38	30	69	23	30	50	31 J	52	100	122 J

Notes:

ND - not detected above laboratory detection limit

J - Estimated value

All values presented in micrograms per liter ($\mu g/L$)

Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction

NWIRP = Naval Weapons Industrial Reserve Plant

(1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra Tech EC, Inc.

(2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed							MW19S				ALC: S		
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/27/2006	6/20/2006	8/28/2006	10/31/2006	1/11/2007	3/5/2007	6/21/2007	9/20/2007	12/17/2007	3/19/2008	6/24/2008	9/9/2008	12/15/2008
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	5.0	41.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	6.8	80.1	ND	ND	ND	ND	ND	7.4	ND	3.8	ND	0.62 J	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	8.2	52.7	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND

	2003 ROD	2013 Proposed			the sta		PARK	MV	V19S	1000	4.73	701		25-78
Constituent	Remediation Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/24/2009	12/15/2009	3/1/2010	12/14/2010	4/14/2011	12/7/2011	3/27/2012	12/5/2012	4/2/2013	12/12/2013	12/15/2008	3/25/2009
Benzene	1	5 .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	0.47 J	ND	ND	ND	0.46 J	ND	1.1	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	1.0 J	ND	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	0.40 J	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	1.0 J	ND	ND	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND

Notes: ND - not detected above laboratory detection limit J - Estimated value All values presented in micrograms per liter ($\mu g/L$) Bold values equal or exceed the clean-up criteria. SVE = soil vapor extraction NWIRP = Naval Weapons Industrial Reserve Plant

(1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007)

prepared by Tetra Tech EC, Inc.
(2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed	MW03S	The state of				Test H	MW08S			11.43	35.11		200
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/15/2008	12/15/2008	3/25/2009	3/28/2012	12/6/2012	4/3/2013	12/12/2013	9/16/2015	12/2/2015	3/24/2016	10/5/2016	4/5/2017	10/10/2017
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Constituent	2003 ROD Remediation	2013 Proposed	43.567		i de la			MW-09S	1000	13.43-13	52 97 ES	1919	1 30
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/25/2009	3/28/2012	12/6/2012	4/3/2013	12/12/2013	9/16/2015	12/2/2015	3/24/2016	10/5/2016	4/5/2017	10/10/2017
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	- 5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes.

ND - not detected above laboratory detection limit

J - Estimated value

All values presented in micrograms per liter ($\mu g/L$)

Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction

- (1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra Tech EC, Inc.
- (2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed		MW	028	1
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/28/2012	12/6/2012	4/3/2013	12/12/2013
Benzene	1	5	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND

Constituent	2003 ROD Remediation	2013 Proposed					М	W20S		de mar	
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	12/15/2009	3/1/2010	12/14/2010	4/14/2011	12/8/2011	3/28/2012	12/6/2012	4/3/2013	12/12/2013
Benzene	1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	0.55 J	0.69 J	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:
ND - not detected above laboratory detection limit
J - Estimated value
All values presented in micrograms per liter (µg/L)
Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction NWIRP = Naval Weapons Industrial Reserve Plant

- (1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February
- 2007) prepared by Tetra Tech EC, Inc.
- (2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

Constituent	2003 ROD Remediation	2013 Proposed			MW071			
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	9/16/2015	12/2/2015	3/23/2016	10/5/2016	4/5/2017	10/12/2017
Benzene	1	5	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	5,5	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	1.3 J	ND

Constituent	2003 ROD Remediation	2013 Proposed		THE STATE	MW-12S	Service State	
Constituent	Goal ⁽¹⁾	Closeout Goal ⁽²⁾	3/25/2009	3/28/2012	12/6/2012	4/3/2013	12/12/2013
Benzene	1	5	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND
Freon 113	5	5	ND	ND	ND	ND	ND
Naphthalene	10	50	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND
Total Xylenes	5	5	ND	ND	ND	ND	ND

Notes: ND - not detected above laboratory detection limit

In detected above laboratory detection film.
 I - Estimated value
 All values presented in micrograms per liter (μg/L)
 Bold values equal or exceed the clean-up criteria.

SVE = soil vapor extraction NWIRP = Naval Weapons Industrial Reserve Plant

(1) 2003 ROD Remediation Goal taken from the Final Operations and Maintenance Manual for Soil Vapor Extraction/Air Sparge System (February 2007) prepared by Tetra Tech EC, Inc.

(2) 2013 Proposed Closeout Goal taken from the Performance and Shutdown Evaluation of the Air Sparge/Soil vapor Extraction System, Site 7 – Former Fuel Depot, Naval Weapons Industrial Reserve Plant, Calverton, New York prepared by Tetra Tech in November 2013.

	32392005	6192006	925/3506	10/30/2004	3/1/2007	ezezeez	\$190Z904	12/18/2007 3/18/2008		623/2668	SVI 8002/6%	2002/51/21	326,2009	1215/2009	3/2/2010	1205/2010	12/15/2010	1242011 3	ti tietetet	1102/121	
	QN	QV	9	QN	QN	QN	QN	Q.	9	Q	Q.	QN	Q.	QN	Q.	Q.	Q.	QN	QN	Q.	QN QN
	QN	QN	QN	QN	QN	QN	QN	QN	QN	Q	QN	Q.	14.8	Q	Q	gN	ND	QN	. 11	QN	ON ON
	QN	Q.	QN	Q.	Q	QN	Q	Q.	QN	QN	QN	QN	0.443	QN	Q.	QN.	QN.	Q.	QN	Q.	QN QN
_	2.1	QN	QN	QN	0.773	QN	QN	QN	QN	QN	170	QN	1.63	QN	QN	QN	QN	QN	0.52.1	ND	ND ND
_	QN	QN	QN	QN	QN	QN	ND	ND	Q	gN	QN	QN	QN	QN	QN	QN	ND	ND	QN	ND	ND
-	QN	QN	QN	QN	0.907	QN	QN	0.683	QN	Q	QN	QN	15.9	QN	QN	QN	ND	ND	QN	QN	ON ON
-																					

	4/6/2017		QN	8.6	GN	23	ND	356	
	16/6/2016		QN	390	ND	99	ND	1949	
	3/24/2016		QN	210	343	38	ND	510.3	
	123/2015		QN	310	QN	11	ND	1443	
	\$130,000		QN	220	QN	15	141	1630	
	SISTATA		QN	210	ON	36	143	1282	
	3/18/2015		QN	160	ND	33	0.98 J	921	
	12/16/2014		ND	169	QV	33	123	838	
	9/24/2014		g	140	QV	37	1.63	726	
	STREET		gN	130	QN	526	1.0.1	392	
	3/27/2014	Control College	QN	148	QN	24	0.77.1	275	
	12/12/2013		QN	6'86	QN	28.2.3	77	645.3	
	442313		ND	1971	QN	693	QN	93.2	
	12/1/2012		QN	5.5	Q	Q	ON	36.8	
	3/28/2012		Ø	215	Q	56.1	0.463	696	
	11003011		QN	6.0	QN	111	QN	48.6	
	47,47931		QN	38.1.3	QN	16.7.3	QN	259.3	
SV2	0101/51/41		QN	73	QN	3.6.1	QN	52.5	
•	1413/1916		Q	59	QN	Q.	QN	\$2.5	
	E25/2010		GN	п	QN	=	QN	88	
	3/2/2010		GN	126	QN	46.6	0.73 J	738	
	377673009		QN	151	QN	63.9	1.73	1,520	
	119/2008		QN	276	QN	84.4	191	1,830	
	\$723/2008		QN	295	1.4	H	2.5	1.540	
1	3/13/2008		QN	180	0.403	89	1.9	1,190	
	12/18/2007 DUP		QN	37.5	QN	8.7	QN	173	
	12/18/2007		QN	31.2	Q	1.2	QN	144	
	9/19/1987		QN	734	QN	79.7	0.803	1,240	
	6700/1007		gN	151	QN	73.1	116'0	804	
	3/6/2017		QN.	132	0.893	92.1	11	523	
	\$2252066 1013072006 31672017		QN	156	QN	30.4	п	376	
			QN	156	QN	43.9	2.5	727	
	6/19/2006		QN	82.1	ND	32	QN	424	
	3/28/2006		QN	256.8	QN	88.7	Q.	1,380	
2013 Proposed	Character Goal			8	s	90	s	\$	
2865 ROD	Gestill		-	8	8	10	s	5	
			Benzene	Eshylbenzene	Freun 113	Naphthalone	Toluene	Total Xylenes	

Constituent	2003 ROD 20	913 Proposed												SV3												
	Comp	loreout Goal th	3/29/2084	2010/2104	8/29/2006	103572005	34,2997	4/31/3007	9/19/2007	12/18/2007	3/19/2008	624/2008	9,9/2098	12/16/2008	1 000.00.0	1275/2009	N27819	B/25/2010 1	16/13/2010	12/15/2010	1100311	127/2811 3/	2100XEX	2002311	423913 120	12/12/2013
																			T	l	l	ŀ	l	H	-	
enzene	-	s	112	QN	ND	ND	ND	QN	QN	GN	QN	QV	g	QN	ND	QN	QN	QN	QN	QN	QN	NB	QN	QN	QN	QN
thylbenzene	s	\$	117.0	3.3	QN	QN	115	QN	QN	QN	QN	QN	Q	QN	67.5	ND	2.4	QN	QN	QN.	QN	QN.	Q.	QN	QN.	6.603
reon 113	s	\$	ND	QN	Q	QN	QN	Q.	Q	QV.	Q	QN	Q	0.53.J	Q	QN	QN	QN	92	Q.	QN	QN	ND ND	+	-	QN
Naphthalene	10	90	168.0	QN	gN	4.2	6.1	QN	ND	177.0	46.9	QN	QN	QN	543	QN.	9.4	ND	QN	QN.	22	-	1 190	-	-	ND
oluene	8	s	77	ND	ND	QN	QN	QN	ND	ND	ND	QN	ND	Q	0.313	ND	QN	QN	QN	QX	QN	QN	ND	F	-	QN
otal Xylenes	s	s	75.2	ND	ND	ND	QN	QN	Q	Q.	30.3	QN	Q.	QN	68.7	QN	3.9	Q	QN	Q	1 680	9	N N	Q.	ND	Q
					-												-									1

					10/11/2017		•QN	7.6.3	2.10.1	161	•QN	16.3	
					11/01 10/31	-	N GN	6.1 7.0	0.84.3 2.1	11 61	N	12 24	H
					10/07016 4/	H	ND ND	12	5.8	10.0	QN	103.4	H
					3/23/2016 10	-	Q.	493	ND	Q.	Q.	25	H
					223/2015 3/2	-	QN	6.9	0.44.3	\$3	QN	7	H
					SIGNIA 12	-	QN	=	101	12	QN.	8	
					6262925 90	-	N ON	8.7	1.6.1	9.3	QN.	9	H
					STREETS 67	H	QN.	23	177.0	1.4	QN	56	H
					12/16/2014 N	-	Q.	22	0.41.1	=	QN	7	
					1242914 12		QN	4.63	263	7	9	=	H
					* PERCONA	H	QN	1.7.1	0.45.3	7.1	QN	191	
					SATISTICS &	-	Q	61	QN	7.0	QV	25	H
N	QN	Q			31212013 3		ND	QN	ND	1743	QN	5.0	
5.4.3	QX	ND			442913		ND	1.4	ND	6.8.1	QN	6.0	
QN	QN	Q.			1277/2012		ND	1.5	QN	132	g	29.9	
L 1970	QN	Q.			378/2012		Q	QN	QN	2.7	QV	3.4	
ND	QN	Q			12/8/2011		ND	QN	QN	0.63.3	QN	1.6.1	
22	QN	f 68 0			4147911		QN	2.6	ND	10.5	QN	423	
QN	QN	Q			12/15/2010		QN	6.4	ND	86.6	Ð	9.06	Ī
QN	QN	QN		SV4	10/13/2010		ND	4.0	ND	QN	Q	36	
QN	QN	Q			8/25/2010		ND	1.4.1	ND	5.4	Q	=	
9.4	QN	3.9			3/2/2010		QN	6.77.3	0.67 J	443	gN	17.3	
QN	ND	QN			12/15/2009		QN	0.373	ND	233	QN	8.4	
543	0.313	68.7			3/26/2009	1000	ND	2.8	ND	12.6	QN	62.8	
QN	g	QN			12/16/2008	2 0 00	ND	ND	ND	16.4	QN	6.98	
g	QN	QN			979/2008		ND	10.5	ND	44.7	ND	205	
QN	QN	QN			6/11/1008		QN	7.5	QN	33.2	ND	151	
46.9	QN	36.3			3/13/2004		QN	2.4	ND	18.7	ND	73.6	
6.773	ND	QN			12/18/2007		QN	3.6	QN	П	QN	50.4	
QN	QN	QN			9/20/2007		QN	10.8	QN	48.7	12	187	
QN	gN	QN			4,000,000		QN	5.0	QN	28.5	0.64J	86.4	
6.1	QN	Q			3/7/2006		QN	2.1	ND	19.1	QN	31.7	
4.2	QN	QN			10/20/2006		QN	7	gN	39.3	QN	6765	
QN	ND	QN			#128/2006 DUN		QN	8.7	Q	43.8	QN	110	
QN	ND	QN			9100119		QV	4.0	Q	122	Q.	37.7	
168.0	77	75.2			3/29/2666		Q	22	Q	111	QN	48.1	
20	s	s		2015 Proposed	Closecret Gagf		s	8	s	95	8	s	
10	8	8		Mes ROD Remediation	Gest ⁽¹⁾		-	s	s	10	۰,	\$	
Naphthalene	Toluene	Total Xylenes		Conditions			Benzone	Ethylbenzene	Freen 113	Naphthalene	Toluene	Total Xylenes	

Notes: ND - not detected above laboratory detection limit

ND - not detected above laboratory detection limit ND* - qualified as per Fall 2017 event (UJ qualifier) All values presented in micrograms per liter (mg/L)

SVE = sed vapor extraction

speak or exceed the clean up criteria. Print to 2014, results are examplesed to the 2001 KOD Remoderation Goal. Registering in 2014, results are compared to the 2013 Proposed Classeut Goal.

a Out taken from the Float Opensions and Maintenance Mannal for Skil Vapor Enteriorins/M. Spange System (February 2007) propued by Tera Took RC. Jac.

10. Out taken from the Professioner and Stundown Profession of the A.C. Staterockil vanor Franction Stutens Study 3. Stunner Bush Took Navi Wassan Ladening Bushon Wash Columns Wash Columns Wash

	2063 ROD	2013 Proposed											\$5	37.5										
-	Coaff	Classeer Gear	3/29/2006	6/19/2006	NIE/IOS	10/30/2006	3,77,2697	679,7007	760078116	12/17/2007	317775668	624/2008	9373008	1275/2004	MACTER	12/15/2009	NECTE .	12/15/2010	4147911	1100/1721	3/23/2012	12/5/2012	422913	12/12/2015
pene	-	s	QN	QN	QN	ND	ND	ND	QN	ND	ND	ND	ND	ND	QN	ND	ND	QN	ND	ND	ND	QN	ND	QN
Февдере	s	•	52	ND	43	11	ND	ND	QN	ND	0.38.1	QN.	ND	QN	QN	QN	QN	ND	QN	QN	QN	QN	ND	QN
m 113	8	s	QN	QN	QN	QN	ND	ND	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	ND	QN	ND	QN	ND	QN
hthalene	10	80	20.3	QN	7.8	53	0.63.1	ND	QN	0.70	QN	QN	QN	QN	QN	ND	QN	ND	1.43	QN	QN	QN	ND	QN
erie	s	s	QN	QN	QN	QN	GN	QN	QN	QN	QN	QN	Ð	QN	QN	QN	QN	ND	QN	QN	ND	QN	QN	QN
2 Xylenes	\$	×	2.6	ND	QN	QN	ND	QN	QN	ND	0.55.3	QN	ND	ND	QV	9	Q	QN	Q.	QV	Q	QN.	ND	QN

	JOST ROD	2013 Proposed												SV6											
	3	Closeous Goal?	3/29/2006	N29/2004 DUI	9002/61/9	3/18/3006	10/30/3006	3/7/2007	4/10/1007	9/13/2007	12/17/2067	3/17/2068	6242888	9/8/2008	12/15/2008	STATEOR	40071171	N1/2010	12/15/2010	41473011	11/6/2011	3/28/2012	12/5/2012	442913	12/12/2013
98		v.	ND	ND	ND	QN	ND	QN	QN	ND	QN	ND	Q.	QN	QN	QN	Q	ND	QN	QN	QN	ND	ND	QN	ND
litette	*		2.8	3.1	QN	gN	QN	Ø	GN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	QN	QN	QN
113	\$	8	QN	Q.	QN	QN	ND	QN	QN	QN	Q	QV	Q	QN	Q.	QN	Q	ND	Q	QN	QN	QN	QN	QN	QN
thalene	91	30	3.4	45	2.1	3.9	QN	QN	QV.	QN	QN	QN.	QN	QN	QN	QN	Q	Q	Q	Q.	QN	QN	QN	QN	Q
96	\$	s	QN	QN	QN	ND	ND	QN	QN	QN	QN	QN	QN.	GN	QN	ND	QN	QN	QN	QN	QN	ND	QN	ND	ND
Xylenes	3	8	29	7.8	QN	33	QN	QN	ND	QN	Q	ND	QV.	QN	QN	QN	QN	QN	QN	ND	Q	QN	QN	ND	QN

	2883 ROD	Thi ? Property											80	SV7										
Constituent	Remediation Gent ⁽²⁾	Closcout Goal	3/29/2006	9907/61/2	8/29/2006	19/31/2006	3/6/2007	621/2007	9/19/2007	12/18/2007	3/19/2008	6/24/2008	5/9/2008	12/16/2068	3/25/2009	12/15/2669	3/2/2010	12/14/2010	4742011	12/7/2011	3/27/1012	12/5/2012	4222013	12/12/2013
Senzene	-	s	QN	QN	QN	QN	QN	QN	ND	QN	ND	QN	QN	ND	ND	ND	ND	ND	ND	ND	ND	QN	ND	ND
hylbenzene	\$	s	192	9711	QN	QN	QN	QN.	QN	QN	QN	QN	QN	N	QN	QN	QN	QN	QN	ND	QN	QN	ND	QN
reon 113	s	s	QN	Ð	S	QN	QN	Q	ND	QN	QN	QN	QN	QN	ND	ND	QN	QN	QN	ND	ND	ND	ND	ND
aphthalenc	10	90	95.5	12.5	53	QN	QN	QN	QN	QN	GN	QN	ND	QN	QN	QN	ND	ND	QN	ND	QN	ND	ND	QN
Foluene	2	8	12	QN	QN	QN	QN	QN	ND	QN	QN	QN	QN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fotal Xylenes	\$	s	25.2	QN	QN	ND	ND	QN	QN	QN	QN	QN	ND	QN	QN	ND	ND	ND	ND	ND	QN	ND	ND	ND

	2003 ROD	2013 Promoted											S	8AS										
Constituent	Geal ⁽⁰⁾	Claseout Goal [®]	3/29/2006	9000/61/9	8/28/2006	10/30/2006	3/8/2007	6/20/2007	9/18/2007	12/19/2007	3/17/2068	6733/2008	9/8/2008	12/15/2008	3/24/2009	12/14/2009	3/1/2010	12/13/2010	4/14/2011	12/6/2011	3/28/2012	12/5/2012	4/4/2013	12/12/2013
Benzene	-	s	QN	QN	QN	QN	ND	ND	QN	QN	ND	ND	ND	ND	QN	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	s	s	613	Q	1.2	QN	2.0	QN	QN	QN	3.6	QN	QN	Q.	4.7	ND	1.8	ND	0.37.3	ND	QN	ND	ND	QV
Freon 113	s	s	QN	QN	QN	Q	QN	Q	QN	Q	QN	QN	QN	ND	QN	QN	QN	ND	QN	QN	ND	ND	QN	ND
Naphthalene	10	90	48.5	Q.	2.9	ND	3.6	QN	QN	QN	2.2	QN	ND	QN	4.2	ND	3.5	ND	ND	ND	5.0	ND	ND	QN
Toluene	5	\$	QN	QN	ND	QN	QN	QN	QN	QN	QN	ND	QN	QN	QN	ND	ND	ND	ND	ND	ND	QN	QN	QN
Total Xylenes	\$	s	194	Q	7.3	QN	24.9	QN	ND	QN	12.4	QN	0.433	ND	8.7	ND	4.5	QN	ND	ND	QN	QN	ND	ND

	1003 ROD	-											S	6.00										
Constillment	Remediation Goal ⁽¹⁾	Closeous Goal	3/29/2006	6/19/2006	8/28/7006	10/36/2006	3/7/2007	E/19/2007	\$/18/2007	12/17/2007	3/17/2008	6/23/1008	9/2/2003	(1)15/2008	3/24/2009	12/14/2009	3/1/2010	11/13/2010	414/2011	1267011	27872012	125/2012	43/2013	12/12/2013
cazene	-	s	QN	ND	QN	QN	ND	QN	QN	ND	QN	ND	QN	QN	ND	N	ND	ND	ND	ND	ND	ND	QN	ND
hylbenzene	8	s	QN	ND	QN	QN	QN	QV	QN	QN	Q.	QN	QN	QN	QN	QN	ND	QN	ND	ND	QN	ND	QN	Q
Freon 113	8	8	QN	QN	Q.	QN	QN	QN	QN	QN	QN	Q.	QN	QN	0.313	ND	QN	QN	ND	QN	QN	ND	QN	ND
phthalene	10	80	QN	QN	N	QN	QN	QN	ND	QN	ND	N	Q	ND	ND	QN	QV	QN	QN.	QN	ND	3.8.1	ND	QN
olueno	8	8	QN	ND	QN.	QN	Q	QN	QN	QN	ND	QN	QN	QN	ND	QN	ND	ND	ND	ND	QN	ND	ND	ND
otal Xylenes	5	\$	QN	ND	QN	QN	QN	ND	ND	QN	ND	QN	QN	QN	GN	ND	QN	ND	ND	QN	QN	QN	QN	QN

		2003 ROD	Table Property											S	01AS										
1	Constituent	Remediation Confit	Claseout Geaf	3/23/2006	6/19/2006	8/23/2006	16/36/2006	3772007	6/28/2907	9/18/2007	12/17/2007	3/17/2008	623/2008	9/E/2008	12/15/2008	3/24/2009	12742009	3/1/2019	12/13/2010		1202011	3/27/2012	125/2012	45/2013	12/12/2013
1 5 6 7 80																									
5 5 13 60 80 <td>Tene</td> <td>-</td> <td>s</td> <td>QN</td> <td>QN</td> <td>QN</td> <td>QN</td> <td>GN</td> <td>N</td> <td>QN</td> <td>ND</td> <td>ND</td> <td>QN.</td> <td>QN</td> <td>QN</td> <td>Q</td> <td>ND</td> <td>ND</td> <td>QN</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Tene	-	s	QN	QN	QN	QN	GN	N	QN	ND	ND	QN.	QN	QN	Q	ND	ND	QN	ND	ND	ND	ND	ND	ND
3 4 6 7 8 7 8 7 8 9	plenzene	s	s	2.3	QV	QN	QN	QV	Ø	QN	QN	Q	QN.	QN	2	QN	QN	ND	QN	QN	QN	QN	QN	ND	N
16 56 12 13 14 15 18 18 18 18 18 18 18 18 18 18 18 18 18	2a 113	8	8	ND	Q.	QN	QN	QN	QN	Q	QN	QN	QN	ND	ND	Q	QN	ND	ND	ND	QN	ND	ND	ND	ND
5 5 11 NO	hthalene	10	80	QN	QN	QN	QN	QN	QN	ND	ND	ND	ND	ND	QN	QN	QN	QN	ND	ND	QN	ND	ND	ND	N
5 5 1112 ND ND ND 0871 NO ND	NEDIC .	8	\$	QN	QN	gN	QN	Q	QV	QN	QN	QN	QN	QN	QN	GN	QN	QN	QN	ND	ND	QN	QN	ND	N
	al Xylenes	8	8	21.2	QN	QN	9	0.873	Q.	N	QN	QN	QN	QN	QN	QN	QN	QN	ND	ND	ND	ND	QN	ND	ND

	1003 ROD	1013 Proposed															S	SVII																	
Constitution	Goal ⁽¹⁾	Closeout Goafft	3/30/2006	519/2005	301/61/8	16/31/2006 3/	35,2807 6/1	70007673	121 7905/87/8	12/19/2007 3/18/2008		6/23/2008 9/4	9/8/2008 12/1/	12/15/2008 3/24	37242009 12/14	12/14/2009 3/1/	3/1/2010 12/1/3	12/13/2010 4/14	61620II 124	1262011 378	3/28/2012 12/7	VA 210077421	43/2613 12/12/	747. E101/21/41	3/27/2014 6/18/2014	1014 9/26/2014	2014 12/16/2014	2014 MINIBES	615 674/2015	911777915	818 12/2/81S	818. 323/2016	10552018	118 416/2017	19711/2017
					H	H	Н	H	Н	Н	H	H	Н	Н	Н	H	H	Н	H	Н	Н	H		Н	H	H	Н	Н	Н	H	H	Н	Н	Н	H
Benzene	-	s	ND	Q.	QN	N	ND	Q	ND	QN .	Q	QN	ND	ND ON	N GN	N QN	N QN	ND ON	ND ON	ND ON	ND ON	ND ON	ND ON	ND QN	QN QN	QN Q	QN Q	QN Q	QN C	QN C	ON	QN C	ND	QN	•QN
hylbenzene	8	s	2.5	QN	H	1.7			H	QN	97	12	ND	2.7 0.4	1 (750	1.4	1.4 0.8	0.87.1 2	2.7	1.4 3	3.6	22 3	3.4 1.8	1.8.1	123 0273	7.3 0.54.3	4.1 0.21.3	1.1 0.27.1	73 0.20 3	11 0.93	33 0363	5.3 0.24.3	11 0.51	GN 1	• UD•
reon 113	s	8	180	ND	130	691	121		-	12	156	H	9.2	86.7 5.	54.1 E	151	166	103 24	240.3	145 40	405.3 15	191 14	147.3 13	137 52	52.3 31	32	15	8.8		38.1	J 15	" "	3.9.5	423	1 261
aphthelene	10	90	10.5	QN	-	11.8	QN	140	Q.	1.01	15	611	13.4 2	27.2 \$	5.1 9	9.4 6	6.1 2.2	223 I	17.8 10	10.91	17.1	14.7.3 21.	21.8 J 23.0	23.6.3	9.1 ND	69 G	9 2.61	QN F	QN	9.6	QN 9	QN	433	ND	2.73
Toluene	s	s	3.7	QN	2.2	2.6	ND ON	0.643	0.391	QN	2.8	-	H	5.9 0.7	0.783	1.6	3.4 2	2.5 N	QN	1.6 5	5.6	1.4	1.8 3.2.1	-	0.643 0.283	187.0 18	QN F	QN	0.27.1	73 0.47	13 0.21.	1 0.24 J	QN (1	QN	•QN
otal Xylenes	8	\$	28.8	Q	17.4	18.3	QN	3.3	32	133	72	142	12.8	40.8	7.7	16.1	19.1	9.8	36.9 2	21.4 51	51.7	24.3	26.5 9.1.3	-	141	1. 5.9.1	1 201	121	1.73	1 10.43	13 2.8.1	143	1 2.17.1	3 0243	L77.1 L
								-	-		-	-						-							-						-				

	2003 ROD	2013 Proposed											SV	11										
Commence	Goal	Clescout Goal th	3/29/2006	6/19/2086	8/29/2006	10/31/2096	3/6/1007	621/2007	9/19/2007	12/18/2007	3/19/2008	6/24/2008	9/9/2008	12/16/2008	3/25/2009	12/15/2009	3/2/2016	12/14/2010	4/14/2011	127/2011	3/28/2012	12/6/2012	4/2/2013	12/12/2013
zene	-	s	9	ND	9	Q	Q.	Ð	9	Q.	Đ.	S	Q.	2	QN	Ð	Q.	9	9	ND	Q	Q.	9	S.
Penzene	\$	8	26.4	ND	QN	QN	Q.	Q.	QN	Q.	Q	S.	QN	9	Ð	Q.	QN	Q	Q.	Q.	QN	QN	GN	g
reon 113	s	s	Q	QN	QN	Q	Q	QN	QN	QN	QV	Q.	QN	QN	QN	QN	QN	QN	QV	QN	QN.	0.54.3	0.50 J	Q.
hthaicne	10	80	153	QN	QV	Q.	QN	ND	QN	QN	QN	ND	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND
sene	s	\$	QN	ND	QN	QN	ND	QN	QN	QN	QN	QN	QN	Q	QN	ND	QN	QN	QN	QN	QN	QN	QN	Q
il Xylenes	8	\$	3.5	QN	QN	QN	ND	ND	QN	QN	ND	ND	ND	QN	QN	QN	QN	QN	QN	QN	QV	QN	QN	N

	L	Г	1	-	T	T	1	Т
	TINTITION		*QN	123	*QN	153	*QN	56.3
	4507017		g	393	æ	5.0.3	QN	113
	10/5/2016		Q	323	ND	0.7.1	QN	427
	3/23/2016		QN	п	QX	QN	0.33.1	n
	12/2/2015		QN	183	QN	QN	QN	2.7.1
	9/16/2015		ND	179	QN	493	0303	17
	6747015		QN	7.9	ND	9'9	0.72.1	18
	3/17/2015		QN	15	ND	7.5	101	28
	12767014		QN	6.2	QN	4.0.1	0.25.1	13
	9747814		QN	9.2	ND	7.0	1111	22
	6/18/2014		QN	8.5	QN	9'9	1680	81
	3/26/2014		QN	8.7	QN	4.4	1.4	23
	12/12/2013		QN	0,40 J	ND	QN	QN	2.7
	4273013		ND	143	QN	9.7.1	3.9	41.7
	12/62912		QN	36.6	QN	12.7	113	0.59
	3728/2012		QN	5.6	GN	0.9	33	37.3
	116077.01		QN	9'01	QN	223	0.78 J	16.0
	HISTORY		ND	10.5	QN	43	2.4	36.6
SVI3	12742010		ND	182	ND	10.4	6.75	38.1
	1013/2010		Q	0.71.1	QV	QN	QN	7.0
	8/25/2010		QV	0.963	ND	gN	QN	1.8.1
	3/2/2010		ND	20.6	QN	10.3	978	64.8
	1275/2009		ND	6'61	QN	8.0	22	20.1
	3/15/2009		Q	21.5	QN	10.2	=	619
	12/16/2008		QN	18.8	QN	9.3	53	49.5
	848,648		QN	33.4	0.283	141	12.6	101
	6/24/2018		QV	25.8	ND	14.0	6.7	74.9
	3/19/2008		QN	38.1	QN	13.4	8.5	101.0
	12/18/1997		ND	14.7	Q	7.9	4.7	45.9
	7895/61/6		QN	25.0	0.353	15.3	10.3	86.8
	1305/15/9		QN	26.6	0.35J	15.6	0'6	88.0
	3362007		ND	29.9	0.493	16.4	12.2	99.2
	10/31/2006		QN	QN	QN	22	QN	QN
	8/29/2006		QN	30.5	ND	20.4	15.0	101.0
	419/2006		ND	63.9	ND	\$0.5	17.9	113.0
	3/29/2666		QN	27.78	14	74.5	17.1	192.0
913 Proposed	Clonest Goal		s	vo.	s	88	s	80
	Gest ⁽¹⁾		-	s	s	10	8	s
Continent			Benzene	Ethylbenzene	Preon 113	Naphthalene	Toluene	Total Xylenes

	2003 ROD	2013 Proposed	SNI3	(Cont)					SV14												SV-15					100			
	Coath	Closeout Goaff	450917	498/2017 DUP	11/15/2009	3/2/2010	12/14/2010	4147011	1102/2711	3/28/2012	11/6/2012	42/2013	12122913	3/28/2012	11/7/2012	427013	12/12/36/3	3/20/2014	V182314	9/24/2014	12/16/2014	31823015 6	8182828	\$11772015	2 2101211	31333016 19	10/5/2016	4/6/2017	16/11/2017
																								-	-	H		İ	
state	-	8	gN	Ø	QN	QN	QN	N	ND	QV	QN	QN	QN	ND	QN	QN	QN	ND	Q	QN	QN	ND	ND	ND	ND	QN	QN	QN	•QN
benzene	\$	s	3.9.1	443	0.7	=	11	0.52.3	QN	0.82.5	QN	QN	171	2.0	Q.	Q.	Q	QN	QN	QN	QN	ON	QN	QN	QN	QN	QN	QN	.QN
reon 113	\$	s	g	QN	Q	Q.	Q	gN	QN	Q	QN	QN	QN	2.4	0.53.5	0.45.1	0.77.3	0.63.1	0.39.1	0.40.1	QX	QN	QN	QN	ND	0.62.3	ND	141	263
thalene	10	90	5.0.3	5.8	43	23	1.8	18.1	ND	QV	143	QN	QN	24	1.73	QN	QN	ND	QN	QN	0.63.1	Q.	ND	0.27.1	QN.	QN	QN	GN	6.673
200	8	s	QN	QN	Q	0.42.3	QN	QN	Q.	Q.	QN	QN	ND	ND	QN	QN	2	Q	QN	QN	ND	QN	9	QN	QN.	QN	QN	9	•dN
otal Xylenes	8	\$	113	11.9	11.5	13.3	89	133	QN	3.9	QN	QN	3.9	11.6	QN	QN	QN	QN	QN	QX	Q.	QN.	QN	QN	QN	QN	QN	QN	•QN
						-										-	-	-	-	-	-	-							

Notes:

ND - not detected above laboratory detection lim

J - Bottmaind value

istimated value whites presented in micrograms per liter (mgf.)

vanus presente a manupama per ant cogn., Il value equal or exceed the clean-up criteria. Prior to 2014, revolts are compured to the 2001 ROD Remediation Goal. Beginning in 20

sell vapor estinction
* - Nevel Westons Industrial Reserve Plant

(1) 3001 ROD Ramiliates Cost takes from the Final Operations and Maintenance Masons for Soil Vision Extraction Ad Statum Sharon (Sharon 2007) assessed by Tonn Took RC tax

0 Monitoring Well (Gray Not Currently Sampled)

Air Sparge Well - Not Active As Of December 2011

Air Sparge Well - Not Active As Of November 2013

Vapor Extraction Well - Not Active As Of November 2013 Former AS Piping Former SVE Piping

0

DUP - Duplicate Sample

ND - Not detected above laboratory detection limit (DL). J - Estimated value

All values presented in micrograms per liter (ug/L). Bold values indicate detections. Shading indicates detections in exceedance of the 2013 Proposed Closeout Goal.

2013 Proposed Close (ug/L)	out Goals
Benzene	5
Toluene	5
Ethylbenzene	5
Total Xylenes	5
Freon 113	5
Naphthalene	50
2-Methylnaphthalene	50
Total Lead	15

Note: Piping layout is shown here for general purposes only. See mechanical and process drawings for detailed piping layout. Piping was removed in August 2015.

SCALE IN FEET

File: CV-2017.dwg Date: 11/2/2017

180 Gordon Dr. Suite 110

Exton, PA 19341

FIGURE 5 GROUNDWATER CONCENTRATION MAP SVE WELLS - OCT 2017 SEMI-ANNUAL DECEMBER 2013 - OCTOBER 2017

NWIRP CALVERTON -FORMER FUEL DEPOT - SITE 7 CALVERTON, NEW YORK

VPPENDIX A

CHAIN OF CUSTODY DOCUMENTATION LIEFD FOCS VAD

YPRIL 2017

Date:	04/ 95 /17	
Date.	04/37 /11	

Groundwater Level Measurement Sheet

Project Site: NWIRP Calverton Site 7	Water Level Meter: Solinst
Location: Calverton, NY	Weather: 50's closely
Field Crew: MA RY	Time of Low Tide: N/A

Time of High Tide: N/A

Total Depth of Well Depth to Water Well ID Time Comments (ft bTOC) (ft bTOC) Mar 19.53 SV-2 2404 905 SV-4 19.93 3024 SV-11/MW-40S 28.57 SV-13 2" 26.64 SV-15 16.8 MW-07S 44.04 4" MW-07I 4" MW-08S 22.48 4" MW-09S 4" - Gauge only MW-10S 2" - Gauge only MW-11S 2" - Gauge only MW-12S 20.74 MW-16S MW-17S 20.08 25.45

	9
Signature:	N. C.

Date: 4/5/17

Project/Site Name: NWIRP Calverton Site 7	Date: 04/5 /17	Weather: 50j
Calibrated By:	Instrument: YSI 556	Serial Number:

Parameters	Morning Calibration	Cal. Temperature ⁰C	Afternoon Cal. Check	Comments
Conductivity 1413 (μS/cm°)	12413	11.65	1,413	
pH (7)	7.00	^	6.98	
pH (4)	4.02	-	4.01	
pH (10)	9.00	_	10.03	
ORP 240 (mv)	240.1	-	239.2	
Dissolved Oxygen (%)	100.1%	_	191.3%	
Zero Dissolved Oxygen (mg/L)		_		
Barometric Pressure (mmHg)	_	· ·	_	
(- 0		

pH Check (Every 3 hrs):	Time: Standard:	NA	Time: Standard:	NA	Time: Standard:	NA	
(NJ only)	Reading:		Reading:		Reading:		
Signature: 900				,	Date: _		4/5/17

Project/Site Name: NWIRP Calverton Site 7	Date: 04/06/117	Weather: Menuy Rain
Calibrated By:	Instrument: YSI 556	Serial Number:
		0/10030/

Parameters	Morning Calibration	Cal. Temperature ⁰C	Afternoon Cal. Check	Comments
Conductivity 1413 (µS/cm°)	1413	12.030	1414	
pH (7)	6.97	_	7.03	
pH (4)	4.03	_	4.01	
pH (10)	10.02	none,	9.97	
ORP 240 (mv)	240.3		2401	
Dissolved Oxygen (%)	100.0%		99.7%	
Zero Dissolved Oxygen (mg/L)	_		^	
Barometric Pressure (mmHg)		5	_	
	_			

pH Check (Every 3 hrs): (NJ only)	Time: Standard: Reading:	NA	Time: Standard: Reading:	NA	Time: Standard: Reading:	NA
Signature:				,	Date: _	46/17

H&S Environmental, Inc.

Low Flow/ Low Stress Groundwater Sampling Log

Project:	NWIRP Calverton Site 7	Date: 04/	DS /17	
Location:	Calverton, NY	Sampler: V	iA.	KGS
Well ID:	SV-13	PID (ppm)	-	
Start Time:	1530 End Time: 1555		Field Testing Equ	pment
Well Const	ruction: 4" PVC	Make	Model	Serial #
Depth to W	/ater: 99	YSI	556	
Well Depth	: 28.57	LaMotte	2020	
Water Colu	ımn:	Grundfos	2" Pump	
Dedicated	Pump in Well?: No	Grundfos	RediFlo 2	
Volume Re	quired (gal) (Water Column x factor x 3):			
Total Volum	ne Removed (gal):			

Time (hh:mm)	Volume Removed (L)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
1530	1.2591	. 25991	19.92	15.64	5.96	219	1.84	-277.5	332	(k)-
1535		1		15.66	5.98	217	060	-277/	201	
1540				15.64	5-97	219	047	-277.4	1.97	
1545				15.67	5-97	219	0.45	-277.9	1.94	
1550	V	V	<u> </u>	15.63	5.96	218	0.43	-2773	1.96	V
						-				
ж										

Acceptance Criteria:

<0.3ft

3% ±0.1

3%

% ± 10mv

10%

1 gal = 3.79 L

Sample Collection

Time	Sample ID	Container	# Bottles	Preservative	Analysis
1555	55 SV- 13 -04- 05-17	40 mL CG	3	HCI	Select VOCs
Y		1L AG	2		2-methylnaphthalene
	1	250 mL PL	1	HNO3	Lead

Comments	000-1	collected (2	16/1)	A-	
(X	MSTM	(D) call	cled	1	1555	X	
Ohr M	119 11) Con	211	C	4/5	117	
11 16	Signature				17	Date	

^{2&}quot; Screen Volume = 0.163 gal/ft or 616 ml per foot

^{4&}quot; Screen Volume = 0.65 gal/ft = 2.46 L

Project: Location: Well ID:	NWIRP Calverton	alverton Sit	e 7		Date: Sampler: PID (ppm)	04/05 186A	/17		K	GS
Well Constr Depth to Wa Well Depth: Water Colum Dedicated F Volume Rec	mn: 3		n x factor x 3):	9.0	Make YSI LaMotte Grundfos Grundfos	Fie Mg(L	Model 556 2020 2" Pump RediFlo 2	21900	Seria	al# 100307 29
Time (hh:mm)	Volume Removed	Flow Rate (ml/min)	Depth to Water	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
1020	11/5	· Etalan	(ft) 19.03	1204	5-12	48	9.50	241.6	6.79	Clear
1040				12.15	5-12	47 47 47	9-95	-254.7 -262.7 -264.8 -264.1	4.69	
							0		13/	- V
	ceptance Crite clume = 0.163	eria: 3 gal/ft or 616	<0.3ft ml per foot	3%	±0.1	3% 1 gal = 3.79	10% L	± 10mv	10%	
4" Screen Vo	olume = 0.65	gal/ft = 2.46 L		Samp	le Collec	ction				
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis	
1050	MW-07S -0	4-05-17	40 mL CG		3		HCI		Select VOC	s
<u> </u>			1L AG 250 mL PL	-	1		HNO3		2-methylna	phthalene
			230 IIIL F L				HIVOS		Leau	
Commer	nts				4					
	gn					9	15/17	7	•	_

Project:	NWIRP C	alverton Sit	e 7	_	Date:	04/ 05	/17			4	
Location:	Calverton	ı, NY		_	Sampler:	LC6/A		-K	CS		
Well ID:	MW-07I			_	PID (ppm)				<1/		
Start Time:	1140	End Time:	1210			Fie	ld Testir	ng Equip	ment		
Well Const		4" PVC			Make		Model		Seri	ial#	
Depth to W	ater:	.98		_	YSI			07Fl00307			
Well Depth	44				LaMotte	19	929				
Water Colu	mn:	-06			Grundfos		2" Pump				Ī
Dedicated F	Pump in Well	1?: <u>No</u>			Grundfos		RediFlo 2				
		Water Column		:_52	.071/95						
Total Volun	ne Removed	(gal):5	4 gallers								
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity		-
(hh:mm)	Removed	(mil/min)	Water (ft)	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color	
1/40	5.92	1.0gallar	18.04	12-13	5.87	99	0.73	-151.8	0.5	clear	-
1145	1	1	10.0	12.94	587	99	0.70	-248.7	9.47	1	-
1150				1275	5.87	99	0.65	-236.5	0.43		_
1155				1294	5.88	99	0-68	-2453	0.39		1
1200				12.74	5.89	99	0.65	-246.9	0.39	1	1
1205		V	V	12,17	6.88	98	0.67	-2412	0.38	(1)	_
					1				-	-4	1
		g.									_
		O.									
		67									
	. 0										
Ac	ceptance Crit	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%		
2" Screen V	olume = 0.16	3 gal/ft or 616	ml per foot			1 gal = 3.79	L				
4" Screen V	olume = 0.65	gal/ft = 2.46 L									
				Samp	le Collec	ction					
12 10	Sample ID MW-071 -04		Container		# Bottles		Preservat	ive	Analysis		_
140	MVV-071 -04	- 95 -17	40 mL CG		2		HCI		Select VOC		-
	-		250 mL PI		1		HNO3		2-methylna Lead	pritnaiene	-
			230 IIIL F				TINOS		Leau		-
											-
Comme	nts	E0 -	1 11-	Lo1	, ,	\bigcap	177	~			
		CR-0	1 00/100	14 St	लि व	(W) 7	105	5			
						U					
	,					ч	1511-	,			
9,				_			1711				
	Sic	nature					Date				

Project:	NWIRP C	alverton Sit	e 7		Date:	04/ 05	/17			
Location:	Calvertor			-	Sampler:	1/6/1			10	c
Well ID:	MW-085			-	PID (ppm)	100/4				GS
				_	r io (ppin)					
Start Time:	1255 =	nd Time:	320			Fie	ld Testi	ng Equip	ment	
Well Const		4" PVC		_	Make		Model		Seria	al#
Depth to W	ater:18	127			YSI 556 07/19					10307
Well Depth:	12	48			CaMotte Hack 2020 21002 19029					
Water Colu	mn:	4.21			Grundfos		2" Pump			1
Dedicated F	Pump in Well	?: <u>No</u>			Grundfos		RediFlo 2			
Volume Red	quired (gal) (Water Colum	n x factor x 3)	:_10.0						
Total Volum	ne Removed	(gal):	0.0							
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity	
(hh:mm)	Removed	(ml/min)	Water	(°C)	(STD)	(μS/cm°)	(mg/L)	(mv)	(NTU)	Color
1258	(L)	15 1	(ft) (8.33	12.48	4.30	07	740	121.0	1	1
[300	1/1371	25991	10,157	12.40	4.12	86	4.40	-121.0	6.02	Gen-
1305	 	_			4.33	85	701	-218.3	4.89	
13/0			_	12.54	4.55		730		11.10	
	1			12.57	4.34	83	7.70	-208.4	4.60	
1315	- W	J	<u> </u>	11.51	47)4	83	7.69	-209.3	4.57	4
	-			+	-			-		
	 			-	-					
				-	-					
		Ç								
	- 70.									
Ac	ceptance Crit	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
2" Screen V	olume = 0.16	3 gal/ft or 616	ml per foot			1 gal = 3.79	L			
4" Screen V	olume = 0.65	gal/ft = 2.46 L								
				Samp	le Collec	ction				
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis	
1320	MW-08S -0	4-05-17	40 mL CG		3		HCI		Select VOC	S
. ,			1L AG	3	2				2-methylna	ohthalene
			250 mL Pl	_	1		HNO3		Lead	
Commer	nts									
	1					76	1/21			
	Theh					7	1511	7		
	Sig	nature					Date	/		

Project: Location: Well ID:	NWIRP Ca Calverton MW-09S	NY	e 7	-	Date: Sampler: PID (ppm)	04/ 05	/17		K	GS
Well Depth: Water Colu	ruction: ater: 14		Field Testing Equipment							
	quired (gal) (\ ne Removed		n x factor x 3):		190					
Time (hh:mm)	Volume Removed (L)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
1355 1400 1400	1, 2591	125(9)	17.92	12.46	5.74 5.74 5.78	97 97	2.17	-243.6 -240.7 -241.8	3.05 2.79 2.74	4198
14/5	V	J	V	12-94	5.76	97	2.18	-245.9	2.68	
		0 ()								
Ace	ceptance Crite	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
	olume = 0.163 olume = 0.65	-	-	Samp	le Collec	1 gal = 3.79	L			
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis	
1420	MW-09S -04	4-05 -17	40 mL CG		3		HCI		Select VOC	s
			1L AG 250 mL PL		1		HNO3		2-methylna _l Lead	ohthalene
Comme	nts_									
9/-	Sig	nature		-		4	Date	7		

Project:	NWIRP Ca	alverton Sit	e 7		Date:	04/ 06	/17				
Location:	Calverton	, NY		_	Sampler:	1661	d.		-10	CS	
Well ID:	SV-15			-	PID (ppm)				SI		
Start Time: Well Const		end Time:	450		Make	Fie	ld Testi	ng Equip	pment Serial #		
Depth to W	ater:	81		-	YSI 556				075100307		
Well Depth	0 /	64			LaMotto	10h	2020	21002	1 .	MA	
Water Colu	/ /	, 83			Grundfos	1	2" Pump		-	1	
	Pump in Well	17: <u>No</u>		_	Grundfos		RediFlo 2	!			
Volume Re	quired (gal) (Water Column	n x factor x 3):	5.0							
		(gal):									
									· - · · · ·		
Time (hh:mm)	Volume Removed	Flow Rate (ml/min)	Depth to Water	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color	
(1111.11111)	(L)	(11.071,111)	(ft)	()	(010)	(µS/Cm)	(mg/L)	(iiiv)	(1410)	Joioi	
1420	(-250)	125/01	16.62	15.36	600	243	1235	-1234	799	Cler	
1415	1	10)	1	1540	601	288	124	-123-6	7.81	1	
1430				15,42	6.00	236	12-10	-1217	7.31		
1438				15.47	600	237	12-07	-123.9	7.27		
W 40	1			15.48	600	236	12.05	-124,	7.25		
1445		V	V	15.96	600	236	12.03	-124.3	721		
				1	0		1	1	1	0	
		- 3									
		Çi .									
		67									
Ac	ceptance Crit	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%		
		3 gal/ft or 616	ml per foot			1 gal = 3.79					
		gal/ft = 2.46 L									
				Samp	ole Collec	ction					
Time	Sample ID)	Container		# Bottles		Preservat	tive	Analysis		
MCO	SV- 15 -0	417	40 mL CG		3		нсі		Select VOC	s	
1130			1L AG	·	2				2-methylna		
			250 mL PL		1		HNO3		Lead		
	1										
Comme	nts										
	ghu					4	1611	,			
				-			- /		-		

Project: Location: Well ID:	NWIRP Ca Calverton SV-11/MV		27		Date: Sampler: PID (ppm)	04/ Qb UbA	/17		K	GS
Depth to W. Well Depth: Water Colu Dedicated F	tart Time:				Make YSI LaMotte H Grundfos Grundfos		Model 556		ment Seria 07 F(a	20307
4,000	C. administration	The second secon		Temp	pH	SPC	DO (mg/l.)	ORP (my)	Turbidity (NTU)	Color
(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(N10)	
1330	1.256	.250	17.83	15.85	6.23	297	329	-1189	7.85	Char
1335		1 17	1	15.70	620	184	3-30	-18.4	5.4	
1340				15.70	7	185	227	-10/1	5.2	
1345	1			1573	4-19	183	12/	-n7.2	5/17	1
1350	0	V	4	12.10	611	102	200	TVIL	34	V
	 	-		 						
	1	- 13		1						
	 	0		 						
		07								
Ac	ceptance Crit	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
2" Screen V	/olume = 0.16	3 gal/ft or 616	ml per foot			1 gal = 3.79	L			
4" Screen V	/olume = 0.65	gal/ft = 2.46 L								
				Samp	le Collec	ction				
Time	Sample ID		Container		# Bottles		Preserva	tive	Analysis	
1355	SV- 11 -0	14-06-17	40 mL CG		3		HCI		Select VOC	s
.,			1L AG	3		<u> </u>			2-methylna	phthalene
			250 mL Pl		1		HNO3		Lead	
Comme	ents									
4	8 M					9/	6117	7		
	A-V	anatura		-			Date		_	

Project:		alverton Sit	te 7	_	Date:	04/ W	/17			4
Location:	Calverton	, NY		_	Sampler:				K	GS
Well ID:	SV-4			_	PID (ppm)					
Start Time:	1230	ind Time: _	255			Fie	ld Testii	ng Equip		
Well Const	ruction:	4" PVC		_	Make			Serial #		
	ater:	211			YSI	· · · · · · · · · · · · · · · · · · ·				
Well Depth		24			Lamotte Flach 2020 2 100 2 1982					
Water Colu		10.31			Grundfos		2" Pump			
	Pump in Well			2 0	Grundfos		RediFlo 2			
		Water Colum (gal):	n x factor x 3):		1.0					
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO (maril)	ORP	Turbidity	Color
(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color
1230	1-25/21	1250	20.15	13-36	621	170	9.97	-1701	684	clem
1215	10	1 (1)		14.29	6.14	188	9.27	-150.9	4.23	
1240				1436	614	187	9.10	-1490	4.02	
1245				14-37		186	9.03	- 1473	3.99	
1250	V	V		14.40	6.14	185	9.02	-1462	7.17	V
		0		-						
	-	Ci			-					
	-	8.1		-	-					
	-			_		ļ				
L								. 10		
	ceptance Crit		<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
		3 gal/ft or 616				1 gal = 3.79	L			
4" Screen V	olume = 0.65	gal/ft = 2.46 L	•	Samp	le Collec	ction				
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis	
1263	SV- 4 -04	- Oh -17	40 mL CG		3		HCI		Select VOC	s
,			1L AG	;	2				2-methylna	phthalene
			250 mL PL		1		HNO3		Lead	
Commo	nt.									
Comme	nts									
	-					-		Maria 100 -		
							11 -			
	no					4/6	117			
	Pin Sin	nature		-		-1 0/	Date		-	
	Sig	griature					Date			

Project:		alverton Sit	e 7		Date:	04/ 06	/17		-	4
Location:	Calverton	, NY			Sampler:	VIA		_	K	(1.5)
Well ID:	MW-16S				PID (ppm)					
Start Time:	1015	ind Time:	045			Fie	ld Testi	ng Equip	ment	
Well Const	ruction:	2" PVC			Make		Model			
Depth to W		1.74			YSI 556				07	F100301
Well Depth:	:_ 25	-81			LaMotte	tach	2020	21000	19	027
Water Colu	mn:	113			Grundfos		2" Pump			.1
Dedicated F	Pump in Well	?: <u>No</u>		0 -	Grundfos		RediFlo 2			
Volume Re	quired (gal) (Water Column	x factor x 3):	3-0	<u> </u>					
Total Volun	ne Removed	(gal):	-Q							
Time	Volume	Flow Rate	Depth to	Temp	рН	SPC	DO	ORP	Turbidity	
(hh:mm)	Removed	(ml/min)	Water	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color
(0.1/	(L)	100	(ft)	15:11	10	200	03/	-22/1	200	dies
1020	15(9)	109	1	13,91	1914	212	0.26	2217	0.89	cliga
	1-1		-	15,40	19.11	269	011	-2249	0.73	-
1025		-		15.41	016	263	0.79	-2209	022	
1070	-	\vdash		15,42	9.13	011	030	-220.7	071	$\overline{}$
-	1	- /	1	15.44	19:15	264	011		077	1
1040	- W	4	<u> </u>	15-74	10.13	265	1231	-221.	0/3	V
					-					
		. 0			-					
	-	7.			-					
	-	1		_						
	-					211 000				
				109.56	rul to	1 (BV				
	ceptance Crit		<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
		3 gal/ft or 616				1 gal = 3.79	L			
4" Screen V	olume = 0.65	gal/ft = 2.46 L								
				Samp	le Collec	tion	_		7 1 N Y	
Time	Sample ID	-	Container		# Bottles		Preservat	tive	Analysis	
(042	MW-16S -0	4-06-11	40 mL CG 1L AG		3 x 4 = 12 2 x 4 = 8		HCI		Select VOC 2-methylna	
			250 mL PL		1 x 4 = 4		HNO3		Lead	pricialerie
	DUP-1-12-	- 15 + MC/M	SD for all abo				HIOS		Leau	
	DALCHER	TO I DIOM	all all0	To bound						
Comme	nts									
	Collect DUI	P-1, MS/MSD								
1	1	1				. 1	1 (6)	17		
- 1	-	u		-		-	1.1	/	•	

Project: Location: Well ID:	NWIRP Ca Calverton MW-17S	alverton Site	2 7	-	Date: Sampler: PID (ppm)	04/06 Ubs	/17		K	GS
Well Constr Depth to Wa Well Depth: Water Colum Dedicated F	Vell Construction: 2" PVC Depth to Water: 2008 Vater Column: 5.37 Dedicated Pump in Well?: No Volume Required (gal) (Water Column x factor x 3):			- 3.	Make YSI LaMotte Grundfos Grundfos		Model 556 2020 2" Pump RediFlo 2	2/002	Seri	100307
Total Volum Time (hh:mm)	Volume Removed (L)	(gai):	Depth to Water (ft)	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
2" Screen V	ceptance Crite	eria: 3 gal/ft or 616 r gal/ft = 2.46 L	<0.3ft	15.91 15.93 15.36 15.30 15.13	6-14 6-14 6-13 6-14	429 429 421 421 423 3% 1 gal = 3.79	0.18 0.18 0.18 0.17	-120. [-12.] -12.] -12.] -121 -120	021	Clear
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis	
845	MW-17S -0	4-06-17	40 mL CG		3		HCI		Select VOC	
			1L AG 250 mL PL		1		HNO3		2-methylna Lead	phthalene
			200 1112 7 2	•	•		111103		Leau	
Comme	nts						1 / 6/1			

Signature

Project: Location: Well ID:	NWIRP Ca Calverton SV-2	alverton Sit	te 7		Date: Sampler: PID (ppm)	04/ 06 16/	/17		K	GS
Start Time: Well Constr Depth to W Well Depth: Water Colu	915 E ruction: ater: 19.6	451	945		Make YSI LaMotte T Grundfos Grundfos	Fie	Model 556	2/00Q	Seri	ial# F100307
		Water Colum (gal):	n x factor x 3):	_8	0					
Time (hh:mm)	Volume Removed (L)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (°C)	pH (STD)	SPC (µS/cm°)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
920	1.193	.25/2	19.97	14-00	397 581 5-87	224 231 243	0.56	-48.4 -149.7 -219.7	146 567 437	Strickely
930 935 940	J		J	17.03 17.03 17.06	5-83 5-84 5-86	250 252 252	0.48	-227.4 -229.3 -230.1	39.3	
										•
	e e	<u>e</u> 1								
2" Screen V		eria: 3 gal/ft or 616 gal/ft = 2.46 L		3%	±0.1	3% 1 gal = 3.79	10% L	± 10mv	10%	
Time	Sample ID		Container	Samp	# Bottles	tion	Preservat		Anabaia	
045	SV- 2 -04-		40 mL CG		# Bottles		HCI	ive	Analysis Select VOC	s
110		- 	1L AG		2				2-methylna	
			250 mL PL		1		HNO3	-	Lead	
Commer	<u>nts</u>									
	9/n_	nature				4	1/6/1	7	•	

OCLOBER 2017

Date:	10/10 /17

Groundwater Level Measurement Sheet

Project Site	NWIRP	Calverton Site 7
--------------	-------	------------------

Location: Calverton, NY
Field Crew: E. Seiler + S. Georges

Water Level Meter:	Solinst	
Weather:		
Time of Low Tide:	N/A	
Time of High Tide:	N/A	

Well ID	Time	Depth to Water (ft bTOC)	Total Depth of Well (ft bTOC)	Comments .
SV-2	1097	20.02	23.45	4"
SV-4	11:53	20.06	27.94	4"
SV-11/MW-40S	11:58	17.98	29.20	2"
SV-13	11:42	19.91	28.61	4"
SV-15	12:04	14.89	26.65	2"
MW-07S	13:10			4"
MW-071	08:15 on 10/13	18.96	22.95	4"
MW-08S	12:55	18.28	43.70	4"
MW-09S	15:00	17.95	22.21	4"
MW-10S .	12:21	19.95	22.21	
MW-11S	P2:51	18.43	28.25	4" - Gauge only
MW-12S	1226	18.70		2" - Gauge only
MW-16S	11:57	20.83	28.94	2" - Gauge only 2"
MW-17S	11:49	20.13	15.74	2"
		24.15	25.43	2

Signature: Erich Sult

Date: 10/16/2017

Project/Site Name: NWIRP Calverton Site 7	Date: 10/ 10/17	Weather: 72'F - Sunny
Calibrated By: S. Georges	Instrument: YSI 556	Serial Number:
		12m 100 102

Parameters	Morning Calibration	Cal. Temperature °C	Afternoon Cal. Check	Comments
Conductivity 1413 (µS/cm ^c)	1369 - 1413	25.86		EXP: 12/31/2017
pH (7)	6.93 -> 7.00	27.68		Lor: 661243 Exp: 12/31/2018
pH (4)	3.96 -> 4.00	25.40		Lot: 661570 exf: 12131 2018 Lot: 661126
pH (10)	9.98 -> /0.00	25.86		EXP: 12/31/2018
ORP 240 (mv)	236.4 - 240.0	24.85		Lot: 661207
Dissolved Oxygen (%)	74.2 -> 99.1	29.46		Lot: 0207
Zero Dissolved Oxygen (mg/L)				Air Cac.
Barometric Pressure (mmHg)	760.			

(mmHg)	760.					
pH Check (Every 3 hr		Time:		Time:		
(NJ only)	Standard: NA Reading:	Standard: Reading:	NA	Standard: Reading:	NA	
Signature: E: a	h Lit			Date: _	10/16	1200

Project/Site Name: NWIRP Calverton Site 7	Date: 10/10/17	Weather:
Calibrated By: E. Seiler	Instrument: YSI 556- YSI Pro DDS	Serial Number: 037703
	197 LIO DDS	

Parameters	Morning Calibration Time: 1035	Cal. Temperature °C	Afternoon Cal. Check	Comments
Conductivity 1413 (µS/cm°)	1383 > 1413	24-3		
pH (7)	76.87 > 7.00	24-0		
pH (4)	7.3.88 -> 4.00	24.2		
pH (10)	10-01	24.2		
ORP 240 (mv)	229.4 -> 240.0	24.4		
Dissolved Oxygen (%)	102.9 -> 100	24.4		
Zero Dissolved Oxygen (mg/L)				
Barometric Pressure (mmHg)	782.3			

(mmHg)	782.3	3				
nH Chaola (Faranca Land						
pH Check (Every 3 hrs): (NJ only)	Time: Standard: Reading:	NA	Time: Standard: Reading:	NA	Time: Standard: NA Reading:	
Signature: Encl	- Seih				Date: 10/16/	2017

Project/Site Name: Calverton Sile 7	Date: 10/11/2017	Weather:
Calibrated By: 5. Georges	Instrument: YSI 556 MPS	Serial Number: 12m100102

Parameters	Morning Calibration Time: <u>0</u> 825	Cal. Temperature °C	Afternoon Cal. Check	Comments
Conductivity (µS/cm)	1392>1413	19.70		
pH (7)	7.04 -> 7.00	19.95		
pH (4)	3.95 -> 4.00	19.74		
pH (10)	10.09 > 10.01	19.66		
ORP (mV)	251.0 -> 240.0	19.81		
Dissolved Oxygen (%)	161.0 > 100.0	19.34		
Zero Dissolved Oxygen (mg/L)	1,00,0	1.37		
Barometric Pressure (mm Hg)	760.			
				/2005/2004

Signature:	E. 1	8.1	
oignature:	0762	or, ho	

	1.	. 1		
Date:	10/10	120	17	
		100		

Project/Site Name:	NWIRP Calverton Site 7	

Calibrated By: E. Seiler

Date: 10/ 11 /17

Instrument: YSI 556 ASS

Weather: Cloudy, & 650F

Serial Number: 037703

Parameters	Morning Calibration Time: ○ ぞ25	Cal. Temperature °C	Afternoon Cal. Check	Comments
Conductivity 1413 (µS/cm°)	1372 > 1413	19. 8		
pH (7)	7.16 -> 7.00	19.6		
pH (4)	3.99 -> 3.98	19.9		
pH (10)	10.08 -> 10.00	14.9		
ORP 240 (mv)	246.7 > 240.0	19.8		
Dissolved Oxygen (%)	109.0 -> 103.2	18.3		
Zero Dissolved Oxygen (mg/L)				
Barometric Pressure (mmHg)	748.6			

Ho	Check	(Every	13	hrs) :	Time:

Standard:

Time:

Standard: NA

Time:

Standard:

NA

(NJ only)

Reading:

NA

Reading:

Reading:

Date: 10/11/2017

Project/Site Name: Colverton Sik 7	Date: 10/12/2017	Weather:
Calibrated By: E. Seiler	Instrument: YSI Pro DDS	Serial Number: -637703
	556 MPS	12m100102

Parameters	Morning Calibration Time: 0715	Cal. Temperature °C	Afternoon Cal. Check	Comments
Conductivity (µS/cm)	1.477 -> 1.413	18.60		
pH (7)	7.06 -> 7.00	19.89		
pH (4)	4.15 -> 4.00	19.04		
pH (10)	10.20 -> 10.03	18.63		
ORP (mV)	245.2 -> 240.0	18-37		
Dissolved Oxygen (%)	114.9 -> 100.0	15.96		
Zero Dissolved Oxygen (mg/L)				
Barometric Pressure (mm Hg)	760.			

Signature: _	Erich	Se:	he	
_				_

Date: 10/16/2017

Project/Site Name: _	NWIRP Calverton Site 7	Calibrated By: 5. Georges

	ZONTV	IVENT	80000	וס חדים					
Instrument/Serial Number	Pre-Cal 2	-Pre-Gal /#1-PM- (NTU)	Pre-Cal 10-AM (NTU)	Pre-Cal 10-PM- (NTU)	Post-Cal 1-AM (NTU)	Post-Cal 1-PM (NTU)	Post-Cal 10-AM (NTU)	Post-Cal 10-PM (NTU)	Date
LaMotte 2020e /							(11.0)	(1110)	
HARCH 21000	20.1	101	806	9.96					Time: &
HACH 210002/	21.2.	100	816	10. 1					Time: 1110 & 10/11/18 Time: 0910 &
**	20.4	101	806	9.73					10/12/17 Time: 0745 &
									Time: &
									Time; &
									Time: &
									Time: &
									Time: &
									Time: &
									Time: &

	E -1	5	/ _
Signature:	ESZN	di	w

Date:	10/16/2017
D'ULL.	1 1 1 1 1 1 1

Project/Site Name: NWIRP Calverton Site 7	Calibrated By: E. Seiler
---	--------------------------

Nu	nent/Serial Imber	Pre-Cal 1-AM (NTU)	Pre-Cal 1-PM (NTU)	Pre-Cal 10-AM (NTU)	Pre-Cal 10-PM (NTU)	Post-Cal 1-AM (NTU)	Post-Cal 1-PM (NTU)	Post-Cal 10-AM (NTU)	Post-Cal 10-PM	Date 10/10/2017
LaMotte 2	020e/				1	(11.0)			(NTU)	10/10/2017
2100P	Turb: Smeler	8.40		20.4		_		99.9		Time: 1106 &
·c	`()		29.0		-		100.0		10/11/2017 Time: 6910 &
										Time: 6710 &
										Time: &
										Time: &
			-							Time: &
										Time: &
										Time: &
										Time: &
										Time: &
										Time: &
										Time: &

R			j	
Signature:	sich	du,	lie	5

Date:	10/11/2017

KOMAN Government Solutions

Low Flow/ Low Stress Groundwater Sampling Log

Project:		alverton Si	ite 7	_	Date:	10/ io					
Location:	Calvertor	1, NY		-	Sampler:		iler				
Well ID:	SV-2			-	PID (ppm)						
		End Time:				Fie	The Park Land	ng Equip			
Well Construction: 4" PVC Depth to Water: 19. 99				-	Make		Pro PPS		Serial #		
					YSI		-556		057	703	
					LaMotte		2020		1600	0000	
Water Column: Dedicated Pump in Well?: No					Grundfos	2" Pump					
		_		31.0	Grundfos		RediFlo 2				
			nn x factor x 3):								
otal Volum	e Kemoved	(gal):									
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity		
(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color	
703		1000	20.09	180	5.76	223.0	0.61	154.4	1-34	Clew	
708	5.0	1000	20.10	17.9	5.67	227.5	0.10	46.5	4.71	it	
713	10.0	1000	20.10	17.7	5.55	233.1	-0.05	-28.2	3.88	16	
223	18.0	1000	20.10	17.0	5.66	240.2	0.60	28.3	7.18	14	
728	15.0	1000	20.10	17-1	563	242.6	-0.04	-14. 1	4.00	14	
733	20.0	1000	20-10	17.3	5.65	253.0	-0.12	-29.5	2.59	ii.	
738	25.0	1000	20.10	17.4	5.64	247.1	- 0.16	- 48.6	1.98	15	
443	30-0	1000	20.10	17.5	5.64	242.2	-0.17	-54.7	2.02	it	
748	35.0	1000	20.10	17.5	5.64	242.1	-0.18	-57.8	2.23	te	
753	40	1000	20.16	17.5	5-65	241.0	-0.19	-60.2	2.63	ic	
	eptance Crite		<0.3ft	3%	±0.1	3%	10%	± 10mv	10%		
		gal/ft or 616				1 gal = 3.79	L				
Screen Vo	lume = 0.65	gal/ft = 2.46 L		Camp	le Collec	tion					
Time	Sample ID		Container	Jamp	# Bottles	uon	Preservati	ive	Analysis		
755	SV 2 .12	-15_	40 mL CG		3		HCI		Select VOC	s	
1703		10101			2				2-methylna		
	200	10.01	250 mL PL	-	1		HNO3		Lead		
			200								
ommen	ts										
D							, ,			-	
B-	11	<,	1			101	10/2	17			
	1/4)	115			101	1-120	/ /			
	Cim	natura.					Date				

Koman Government Solutions, LLC.

Location: _	Project: NUIFF CALVERTON SITE 7 Location: CALVERTON NY Sampler: E. Suler i S. Georges Well ID: SV-4 PID:												
	E ruction:4				Make	Fie	eld Test	ing Equi	pment Seri	al #			
	ater: 19.				model Solidir								
	29.9				-								
	mn:									,			
	ne Removed												
Volume Required (gal): 78.6L Dedicated Pump in Well?: V.													
Time (hh:mm)	Volume Removed (L)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color								
1240	1	1.38	21.20	16.64	5.92	0.281	1.70	-158.0	_	Clear			
1245	6.94	1	21.20	14.54	5.83	0.274	1.54	-162.3	10.7	4			
1255	20.74		21.20	16.77	5.76	0.246	1.18	-160.8	5.87	*			
1305	44.54		21.20	16.95	5.68	0.24 (0.49	-159.3	4.67	14			
1315	58.34		20.14	16.99	5.73	0.263	0.25	-154.1	3.57	(r			
1325	72,14		20.15	16.99	5.76	0.272	0.15	-162.4	3.59	и			
1535	ଷଦ.୩५		20.15	16.97	6.78	0.277	0.08	-162.5	2.63	H			
1340	99.74	*	20.15	17.02	5.78	0.177	0.06	-159.7	2.68	lt			
Acc	ceptance Crite	ria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%				
2" Screen Vo	lume = 0.163	gal/ft or 616	mL per foot		4" Screen	Volume = 0.6	55 gal/ft or 2	.46 L per foo	ot				
				Sample	Collec	tion							
Time	Sample ID		Container	- ampir	# Bottles		Preservati	ve	Analysis				
1345	5V-4-101	17 1	tomL CG		3		HCI		Seren Va	,			
	DV 1 1= 11		1h AG		2			2-	-methyl nepht				
		2	Soml PL		1		HNO,		LEAD	where			
			ONE IN				Hadi		FEMI				
Commen	ts_												
E	ich	Si, l	5			10/	16 /2 Date	017					

Project:	NWIRPC	alverton Si	te 7		Date:	10/ 1	/17	400	EK	65	
Location:	Calvertor			-	-	8. 600	-				
Well ID:	SV-11/M			-	PID (ppm)		Las		-		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-	The state of the s				-		
		ind Time:				Fie		ng Equip			
Well Const		2" PVC			Make		Model		Serial #		
	ater: 17.				YSI		556				
	:29.0				LaMotte		2020				
	mn:11.				Grundfos		2" Pump				
	Pump in Wel				Grundfos		RediFlo 2				
Volume Re	quired (gal) (Water Colum	n x factor x 3):	5.46	31/ 2	0.65					
Total Volun	ne Removed	(gal):									
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity		
(hh:mm)	Removed	(ml/min)	Water	(°C)	(STD)	(µS/cm ^c)	(mg/L)	(mv)	(NTU)	Color	
	(L)		(ft)		-						
0919	_	1000	147417.90		5.74	216	0.45	-165.0	12.7	Clear *	
0924	5		17.90	16.84	5.33	176	0.48	151.7	6.33	Clar *	
0929	10		17.90	16.95	5.26	125	1.50	-151.6	4.48	Clear *	
0934	15		17.90	16.96	5.21	/31	1.89	-147.6	4.86	Clear *	
0939	20		17.90	14.98	5.21	129	2.15	-145.9	3.46	Clear	
0944	25		17.90	16.99	5.24	122	2.25	-144.7	2.20	Clear	
0949	30	.v.	17.90	17.03	5.25	123	2.30	-143.5	2.42	Clear	
Acc	ceptance Crite	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%		
2" Screen Vo	olume = 0.163	gal/ft or 616	ml per foot			1 gal = 3.79	L				
4" Screen Vo	olume = 0.65	gal/ft = 2.46 L									
				Samp	le Collec	tion					
Time	Sample ID		Container		# Bottles		Preservat	ive	Analysis		
0949	SV- 11 -10-	11 -17	40 mL CG		3		HCI		Select VOC	s	
			1L AG		2				2-methylna	phthalene	
			250 mL PL		1		HNO3		Lead		
						-					
Commer	nts										
	* GANNE	MATER CON	TANUS BL	k. PAR	LTICULATES						
										-	
_		9 1-									
Es	ich !	Sul				10/	16/20	17			

Project:	NWIRP C	alverton Si	te 7		Date:	10/ 11	/17	-	EK	<u> </u>
Location:	Calvertor	ı, NY		_	Sampler:	E. Se	iler r	S. Ge	orges	
Well ID:	SV-13			_	PID (ppm)				-	
Start Time:	6	ind Time:				Fie	ld Testi	ng Equip	ment	
Well Constr	A Section 1 and 1 and	4" PVC			Make	-	Model		Seri	al#
Depth to Wa	ater: 19.	94		-	YSI		556		12m	100102
	28.				LaMotte		2020		B 16	06000
Water Colu					Grundfos		2" Pump		12	000
	ump in Well	?: No			Grundfos		RediFlo 2		-	
/olume Rec	uired (gal) (Water Colum	n x factor x 3):	69	The state of the s					
		(gal):								
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity	
(hh:mm)	Removed	_(ml/min)_	Water	(°C)	(STD)	(µS/cm ^c)	(mg/L)	(mv)	(NTU)	Color
	(L)	Linin	(ft)	-1.4.4	/		- 20		7 . 1	
1550	10 0	1.30	19.98	15.86	6.02	0.307	3.37	-176.4	6-601	clear
1600	13.0	1.30	19.99	15.59	6.00	0.247	1-5-4	-169. 7	20.6	11
1610	26.0	1.30	19.99	15.46	5.94	0.200	2.69	-159.1	10.8	1.1
620	39.0	1.30	17.99	15.57	5-72	0-181	3-33	-156.8	13.3	N:
600	52.0	1.30	19.99	15.48	5.92	0.172	3.79	-155.9	0.97	l _t
640	65.0	1.30	19.99	15.49	5.91	0.166	4.01	-155. 2	13.7	ir
650	78.0	1.30	19.79	15.47	5.91	0.165	4-07	-156.3	9.88	H
Screen Vo		gal/ft or 616	<0.3ft ml per foot	3%	±0.1	3% 1 gal = 3.79	10% L	± 10mv	10%	
Screen Vo	lume = 0.65 (gal/ft = 2.46 L		Sampl	le Collec	tion				
Time	Sample ID		Container	-	# Bottles		Preservati	ve	Analysis	
1655	SV- 13 -10-	// -17	40 mL CG		3		HCI		Select VOC	3
			1L AG		2				2-methylnap	hthalene
			250 mL PL		1		HNO3		Lead	
ommen	ts									-
1	>1	(1.			10	, 1			

NWIRP Calverton Site 7

Date: 10/ 11/17

Calverton NV

Location: Well ID:	Calverton, NY SV-15	-	Sampler: PID (ppm)	E. Seiler			
	End Time:			Field Testing	g Equipmer	-	
Well Const			Make	Model	_	Serial #	
Depth to W	ater: 16.12		YSI	-566-	Pro DSS	637	703
Well Depth	26.40		LaMotte	2020		THE RESIDENCE OF THE PARTY OF T	04037
Water Colu	ma:		Grundfos	2" Pump			
	Pump in Well?: No		Grundfos	RediFlo 2			
Volume Red	quired (gal) (Water Column x factor x 3):	19.1	L				
	ne Removed (gal):						

Time (hh:mm)	Volume Removed (L)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (°C)	pH (STD)	SPC (µS/cm ^c)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Color
0920	_	600	16.92	17.0	5.74	291.5	0.51	-49.1	36.3	Scini-cle
0925	3.0	600	16.93	17.2	5.68	270.7	0.17	-62.7	34.4	1c 14
0930	6.0	600	16.93	17.4	5.70	240.8	0.47	-63.9	23.9	14 14
0935	9.0	600	16.93	17.5	5.77	234.4	0.82	-64.3	14.0	dear
0940	12.0	600	16.93	17.60	5.83	229.5	0.97	-71.8	17.1	fi
0945	15.0	600	16.93	17.6	5.86	225.6	1.22	-73.8	10.5	- {1
0950	18.0	600	16.93	17.6	5.88	222.4	1.30	- 77.7	_	п
0955	21.0	600	16.23	17.6	5.90	222.3	1.34	- 79.6	5.94	-11

Acceptance Criteria:

<0.3ft

3% ±0.1

3%

10% ± 10mv

10%

1 gal = 3.79 L

Sample Collection

Time	Sample ID	Container	# Bottles	Preservative	Analysis
1000	SV- 15 -10- -17	40 mL CG	3	нсі	Select VOCs
		1L AG	2		2-methylnaphthalene
		250 mL PL	1	HNO3	Lead

Comments	
Freh Syl	10/11/2017
Signature	Date

^{2&}quot; Screen Volume = 0.163 gai/ft or 616 ml per foot

^{4&}quot; Screen Volume = 0.65 gal/ft = 2.46 L

Project:	NWIRP C	alverton Si	te 7		Date:	10/ 10	/17	0	-K	GS			
Location:	Calvertor	, NY		•	Sampler:		OKHES						
Well ID:	MW-075	,			PID (ppm)		opere 5		-				
					(100				-				
Start Time:	13 14 E	ind Time:l	347			ng Equip							
Well Const		4" PVC			Make		Model		Ser	ial#			
Depth to W	acer.	8.961			YSI								
Well Depth	:21	1.95			LaMotte 2020								
	ımn:				Grundfos		2" Pump						
Dedicated	Pump in Well	?: <u>No</u>			Grundfos		RediFlo 2						
Volume Re	quired (gal) (in x factor x 3):	9.0	gal -	34.0 L							
Total Volum	ne Removed		5.0L		-								
Time Volume Flow Rate Depth to Temp pH SPC DO ORP Turbidity													
(hh:mm)	Volume Removed (L)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (°C)	pH (STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color			
1314	-	1 000	18.99	15.18	0.30	59	12.03	-114.7	5.04	Clea			
1319	5L	1000	18.98	14.14	3.92	58	9.97	-70.4	2.17	Clear			
1324	IOL	1000	19.00	14.07	3.79	55	8.95	-71.5	6.73	Clear			
1329	15L	1000	19.00	14.03	3.77	50	8.34	-71.9	3.20	Cleur			
1334	ZOL	1000	19.01	13.98	3.82	49	7.47	-75.9	1.50	Clear			
1339	25 L	1000	19.00	14.03	3.89	47	8.15	-75.8	1.49	Clear			
1344	30L	1000	19.01	14.07	3.95	47	7.45	-75.5	1.40	Clear			
1349	35L	1000	19.01	14.09	3.90	47	7.85	-75.9	1. 32	Clear			
Ac	ceptance Crite	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%				
	olume = 0.163					1 gai = 3.79	L						
	olume = 0.65												
				Sampl	e Collec	tion							
Time	Sample ID		Container		# Bottles		Preservati	ve	Analysis				
1349	MW-07S -10		40 mL CG		3		HCI		Select VOC	s			
1.11			1L AG		2		-		2-methylna	phthalene			
			250 mL PL		1		HNO3		Lead				
Comme	nts												
										-			
	1.1.	0_											
- 4	Meh. E	2	ı ,,				10-1	0.17					
	Sig	nature					Date						

Project:	NWIRP C	Calverton Si	to 7		Date:	10/ 12	/17	-	EK	GS			
Location:	Calverto		ite /	-	Sampler:	7	-	5 6 -					
Well ID:	MW-071	.,		-			ler -	J. 60	25 00				
well in:	14144-071			-	PID (ppm)								
Start Time:		End Time:				Fie	ld Testi	ng Equip	ment				
Well Const	ruction:	4" PVC			Make Model Serial #								
Depth to W			8.14		YSI		556						
Well Depth:	43.	70	-		LaMotte 2020 037702								
Water Colu	mn:				Grundfos		2" Pump						
Dedicated F	ump in Wel	17: <u>No</u>			Grundfos		RediFlo 2						
Volume Red	quired (gal) (Water Colum	nn x factor x 3):	19:	4.0								
Total Volume Removed (gal):													
Time Volume Flow Rate Depth to Temp pH SPC DO ORP Turbidity (hh:mm) Removed (ml/min) Water (°C) (STD) (uS/cm°) (mg/L) (mv) (NTU) Color													
(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm°)	(mg/L)	(mv)	(NTU)	Color			
1422	10	2000	402 11 a	12.41	5.43	0.102	0.23	-191.7	16.1	Cleus			
0832	30	2000	15 15	12.45	5.58	0.113	0.13	-194. 7	10.8	11			
0842	50	2000	14 15	12.46	5 73	0.131	0.12	-203.7	7.21	11			
A852	70	2000	18 15	12.43	5.66	0.130	0.20	-200.6	11 < 1	41			
0902	90	2000	18 15	12.46	5.63	6.133	0.21	-198.9	2.42	(c			
0912	110	2000	18.15	1246	5.102	0 129	0.04	-197.6	1.65	41			
3922	130	2000	1415	12,45	5 62	0.129	0.02	-197.0	1.17				
0937	150	2000	18.15	12.46	5.61	0.132	0.02	-196.1	0.90	11			
0942	170	2000	14 15	17.47	5 60		0.02	-195.4	0.77	0			
0952	190	2000	14.13	12.49	5.61		0.02	-175,5	0.71	11			
0957	200	2000		12.48	-	0.124	0.01	-195.1	0.89	11			
0 (31	200	2000	10.13		- 40		0,0		0.57				
Acc	eptance Crite	orio:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%				
		3 gal/ft or 616		575	20.1	1 gal = 3.79			10.0				
		gal/ft = 2.46 L				1 gas - 5.15							
4 Sulden ve	nume - 0.05	gaint - 2,40 C		Sampl	le Collec	tion							
Time	Sample ID		Container		# Bottles		Preservati	ve	Analysis				
1000	MW-07I -10-	12-17	40 mL CG		3		HCI		Select VOC	5			
			1L AG		2				2-methylnar	phthalene			
			250 mL PL		1		HNO3		Lead				
Commen	ts												
		_											
En	ch	di,	6			10/	12/20	17					
	Sig	nature					Date						

Project:	NWIRP C	Calverton S	ite 7		Date:	10/10	/17	-	EKI	GS_{-}	
Location:	Calverto	n, NY		-	Sampler:	the second secon	eile	-			
Well ID:	MW-085			-	PID (ppm)						
Start Time:		End Time:				Fie	eld Testi	ng Equip	ment		
Well Const		4" PVC		_	Make		Model	-	Ser	ial#	
Depth to W	ater: 18.	28		YSI			Pro Po	25	037703		
Well Depth	22.	21			LaMotte		2020	<u></u>	1009	0604037	
Water Colu	mn;				Grundfos		2" Pump				
	Pump in Wel	_			Grundfos		RediFlo 2				
		Water Colun (gal):	nn x factor x 3):	35	5.1 L						
Time	Volume	Flow Rate	Depth to	Temp	рH	SPC	00	ORP	Turbidity		
(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm°)	(mg/L)	(mv)	(NTU)	Color	
1300		1000	18.30	13.4	4.30	87.1	8.36	234.3	40.2	Clear	
1305	5.0	1000	18.28	13.4	3.94	80.8	8.78	269.7	20.1	C Bax	
1310	10.0	1000	18-30	13.4	3.85	79.7	8.84	285.7	4.98	1.1	
1315	15.0	1000	18-30	13.4	3.83	79.9	8.81	297.6	2.92	1.5	
1320	20-0	1000	18.30	13.4	3.84	79.6	8.81	302-5	1.73	44	
1325	25.0	1000	18.30	13.4	3.84	78.8	8.82	307.8	1.66	11	
1330	30.0	1000	18.30	13.3	3.84	78.4	8.84	313.5	1.32	16	
1335	35.0	(600	18.30	13.4	3.84	78.3	8-81	317.9	1.05	14.	
3110	40-0										
	eptance Crite		<0.3ft	3%	±0.1	3%	10%	± 10mv	10%		
		gal/ft or 616				1 gal = 3.79	L				
Screen vo	iume = 0.65 ş	gal/ft = 2.46 L		Sampl	e Collec	tion					
Time	Sample ID		Container		# Bottles		Preservati	ve	Analysis		
340	MW-08S -10-	10-17	40 mL CG		3		HCI		Select VOCs		
			1L AG		2				2-methylnap	hthalene	
			250 mL PL		1		HNO3		Lead		
commen	ts.										
										_	
-	1	<	4			,	,			_	
RS	2h	De	15			10/1	0/20	レフ			

Project:	NWIRP C	alverton Si	te 7		Date:	10/	/17	0	EK	<u> </u>
Location:	Calverton				Sampler:	F. Sei	le r	S. Geor	yes	
/ell ID:	MW-095	,,,,			PID (ppm)			0.000	7-3	
ren no.	14144-055				, to (ppm)					
art Time:	E	ind Time:				Fie	ld Testi	ng Equip	ment	
Vell Constr		4" PVC			Make		Model		Seri	ial#
epth to Wa	ater: 18	15 1	7.95		YSI		556			
ell Depth:	_ 22.	21			LaMotte		2020		160	6000
ater Colu	mn;				Grundfos		2" Pump			
	ump in Well				Grundfos		RediFlo 2			
lume Rec	quired (gal) (Water Colum	nn x factor x 3):	39.	5					
	e Removed									
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity	
(hh:mm)	Removed	(ml/min)	Water	(°C)	(STD)	(µS/cm ^c)	(mg/L)	(mv)	(NTU)	Color
	(L)		(ft)				11.47	. 1127 2	0	
1505		1000	17.95	15.63	6.05	0.193	11.97	-145.6	31.6	clear
510	5.0	1000	17.98	14.69	5.89	0.226	0.88	-142.8	7.44	11
515	10.0	1000	17.98	14.52	5.89	0.206	0.80	-157.5	4.96	H
520	15.6	1000	17.98	14.55	5.59	0.172	0.55	-156.4	316	4
525	20.0	1000	17.98	14-62	5.83	0.159	4.21	-155.0	2.30	i e
530	23.6 4030 13.98		14.68	5.78	0.151	1.53	-154.0	1.52	31	
535	36.0 1080 17.98		14.74	5.76	0.148	1.65	- 152.7	2.13	11	
540	27.5	500	17.98	14.79	5.72	0,144	1.32	-14713	1-16	11
545	30.0	500	17.78	14.80	5.72	0.139	1.69	-151.8	1.44	1c
550	32.5	500	17.98	14.79	5.71	0,139	1.53	-147.7	1.01	fe
555	35.0	500	17.98	14.65	5.70	0.135	1.49	-149.5	1.10	54
600	37.5	500	17.98	14.69	15.68	0.13+	1. 34	- 147.0	0.61	14
Acc	ceptance Crite	eria;	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
Screen Vo	olume = 0.163	3 gal/ft or 616	ml per foot			1 gal = 3.79	L			
Screen Vo	olume = 0.65	gal/ft = 2.46 L		_						
			* ***	Samp	# Bottles	tion	Preservat	lun	Analysis	
Time	Sample ID MW-09S -10		Container 40 mL CG		# Dotties		HCI		Select VOC	s
005	MW-035 -10	- 10-17	1L AG		2				2-methylna	
			250 mL PL		1		HNO3		Lead	
	-		230 IIIL FL				11100			
mmer	nts									
	-									
to		(f			1	1 1	_		
12-	ich	al	2)			10	110/2	01+		
160	Sin	nature		•			Date			
	Jig									
100		_	.7 60	. 1	1172	- 1		100	40 4	11/2 03

	Project:	NWIRP C	alverton Si	te 7		Date:	10/ 11	/17						
	Location:	Calverton	, NY		-	Sampler:	E. Se	iler -	S. 60	orges				
	Well ID:	MW-16S			-	PID (ppm)				J				
	Start Time:		ind Time:				Fie	ld Testin	ng Equip	ment				
	Well Constr		2" PVC		_	Make		Model		Serial #				
	Depth to Wa	ater: 20.	73			YSI		556	037703					
	Well Depth:	25.	41			LaMotte	otte 2020 16060							
	Water Colum	mn:				Grundfos		2" Pump						
	Dedicated P	ump in Well	?: <u>No</u>			Grundfos		RediFlo 2						
	Volume Rec	quired (gal) (Water Colum	in x factor x 3):	14.3									
		e Removed												
e.	*													
	Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity	Color			
	(hh:mm)	Removed (L)	(ml/min)	Water (ft)	(°C)	(STD)	(μS/cm°)	(mg/L)	(mv)	(NTU)	Color			
	1053	_	800	20,77	17.1	6.16	234.8	0.62	-46.8	2.24	clear			
	1058	4.0	800	20.77	17.1	5.96	237.0	0.00	-50,0	1.34	44			
8	1603	8.0	800	20.37	17.1	5.85	2379	-0.05	-53.1	1.66	10			
	1113	8.0	800	20.77	17.8	5.95	240.2	1.21	-19.8	1.38	٨			
1	1118	12.0	800	20,77	17.1	5 87	037.1	-0.09	-38.8	0.96	10			
-	1123	16.0	800	20.77	17.1	5.85	237.8	-0.14	-40-8	0.75	16			
1	1128	18.0			17.1	5.85	235.1	-0.16	-49.7	1.05	116			
1	1120	10.0 800 20.77				4,00	20011	010	41.1					
-														
					_									
١		-			_					-				
١														
ı			3	-0.00	201	.0.4	70	400/	± 10mv	10%				
		eptance Crite		<0.3ft	3%	±0.1	3%	10%	T IONIA	10%				
		olume = 0.163					1 gal = 3.79	L						
	4" Screen Vo	lume = 0.65	gal/ft = 2.46 L		C	- 0-11	41							
					Samp	le Collec	tion							
١	Time	Sample ID		Container		# Bottles		Preservati	ve	Analysis				
١	1130	MW-16S -12	- [-15	40 mL CG		$3 \times 4 = 12$		HCI		Select VOC				
١				1L AG		2 x 4 = 8		***		2-methylnap	hthalene			
ı				250 mL PL		1 x 4 = 4		HNO3		Lead				
Į	1140	DUP-1-10- (-17 + MS/M	ISD for all abov	e parame	ters								
	^	-												
	Commen	its												
							-				_			
		Collect DUP	-1, MS/MSD											
			_											
	5.	-1	< 1	-			14	111/20	~					
	0	Chi	sel				(0)		117					
		Sign	nature					Date						

Project:	NWIRP (Calverton S	ite 7		Date:	10/ /0	/17			
Location:		COLUMN THE PROPERTY AND		-	Sampler:		W (165		-	
Well ID:	MW-175			-	PID (ppm		arches		-	
				-	rio (ppin				-	
Start Time	1706	End Time:				Fie	ld Testi	ng Equip	ment	
Well Cons	struction:	2" PVC		_	Make		Model		Ser	ial#
Depth to V		0.03			YSI		556			
Well Dept	h:15	5.43			LaMotte		2020	1		
Water Col	umn:				Grundfos		2" Pump	1		
Dedicated	Pump in Wel	17: <u>No</u>			Grundfos		RediFlo 2			
Volume R	equired (gal) (Water Colum	nn x factor x 3):	2.64.	m1 / /	0.00 L				
Total Volu	me Removed	(gal):			,					
Time	Volume	Flow Rate	Depth to	Temp	pH	SPC	DO	ORP	Turbidity	
(hh:mm)	Removed	(ml/min)	Water	(°C)	(STD)	(μS/cm ^c)	(mg/L)	(mv)	(NTU)	Color
1706	(L)	1000	20.0 G	17.40	6.13	418	7.58	-166-3	2.16	Clear
1711	5000 L	1000	20.06	17.71	6.04	397	0.46	-170.7	1.41	Clear
1716	100mL	1000	20.07	17.54	6.02	387	0.28	-130.3	1.12	Clau
1721	15,000L	1000	20.06	17.64	6.01	372	0.14	-170.8	0.98	Clew
1726	201	1000	20.00	14.60	6.00	371	0.11	-170-1	9.90	Clear
1731	25 L	1000	20.06	17.53	15.99	370	0.05	-170,0	0.75	Clear
1736	306	1000	20.00	17.37	5.98	368	0.06	-101.7	0.76	Cler
1341	35L	1000	20.00	17.38	5.97	344	6.09	-1695	0.70	Clear
								1.5		
									-	
Ac	ceptance Crite	eria:	<0.3ft	3%	±0.1	3%	10%	± 10mv	10%	
	olume = 0.163				2011	1 gal = 3.79			1070	
	olume = 0.65					1 gai - 0.10	-			
		,		Sample	e Collec	tion				
Time	Sample ID		Container		# Bottles		Preservati	ve	Analysis	
1741	MW-178 -18	10 -17	40 mL CG		3		HCI		Select VOC	8
			1L AG		2		***		2-methylna;	hthalene
,			250 mL PL		1		HNO3		Lead	
Commer	nts									
1	- 1	1.	1							
Ks	rich	du	15	-		le /1	6/20	17		
	01		-				1 00	- 1		

VPPENDIX B

DATA VALIDATION REPORTS AND

APRIL 2017

VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-503

SDG #:

R1703120

Client:

KOMAN Government Solutions, LLC.

Date:

06/08/2017

Laboratory:

ALS Environmental, Rochester, NY

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for 12 (twelve) water samples and 1 (one) field blank and 1 (one) trip blank were analyzed for Volatiles by SW846 Method 8260C.
- 2. The samples were collected on 04/05-06/2017. The samples were submitted to ALS Environmental, Rochester, NY on 04/07/2017 for analysis.
- 3. The USEPA Region II SOP HW-24, Revision No.: 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			-
MW-07S-040517	R1703120-001	04/05/17	VOA	Water	
MW-07I-040517	R1703120-002	04/05/17	VOA	Water	
MW-08S-040517	R1703120-003	04/05/17	VOA	Water	
MW-09S-040517	R1703120-004	04/05/17	VOA	Water	
MW-17S-040617	R1703120-005	04/06/17	VOA	Water	
SV-2-040617	R1703120-006	04/06/17	VOA	Water	
MW-16S-040617	R1703120-007	04/06/17	VOA	Water	
SV-13-040617	R1703120-008	04/05/17	VOA	Water	
SV-4-040617	R1703120-009	04/06/17	VOA	Water	
SV-11-040617	R1703120-010	04/06/17	VOA	Water	
DUP-1-040617	R1703120-011	04/05/17	VOA	Water	Field Duplicate of sample SV-13-
					040517
EB-1-040617	R1703120-012	04/05/17	VOA	Water	Equipment Blank
SV-15-040617	R1703120-013	04/06/17	VOA	Water	
Trip Blank	R1703120-014	04/05/17	VOA	Water	Trip Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All water samples were analyzed within 14 days from sample collection. No qualifications were required.
- 2. All water samples were properly preserved (pH<2.0). No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 04/14/2017 (R-MS-06) exhibited acceptable %RSDs and average RRF values for all compounds. No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 04/14/2017 @ 09:05 (R-MS-06) exhibited acceptable %Ds ($\leq 20.0\%$) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were $\leq 20.0\%$. No qualifications were required.
- 2. CCV analyzed on 04/14/2017 @ 19:33 (R-MS-06) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 3. CCV analyzed on 04/17/2017 @ 09:17 (R-MS-06) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 4. CCV analyzed on 04/17/2017 @ 19:47 (R-MS-06) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 5. CCV analyzed on 04/18/2017 @ 09:08 (R-MS-06) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 6. CCV analyzed on 04/18/2017 @ 18:29 (R-MS-06) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.

Surrogates:

1. Surrogates %RECs values for all water samples and associated QC were within the laboratory limits with the exception of toluene-d8 in samples SV-11-040617 (113%) and SV-11-040617 RE (113%).

Client Sample ID	Surrogate	%REC	Compound	Action
SV-11-040617	Toluene-	113	Ethylbenzene	None
	d8		M,p-Xylenes	None
			Toluene	None
			o-Xylene	J
SV-11-040617	Toluene-	113	Ethylbenzene	None
	d8		M,p-Xylenes	None

Client Sample ID	Surrogate	%REC	Compound	Action
		Toluene	None	
			o-Xylene	J

Note: Results for the re-analysis for sample SV-11-040617 were marked as "N" in the reportable column of the EDD for "Do Not Use."

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all four internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (RQ1703212-04) analyzed on 04/14/2017.

Blank ID	Compound	Results (µg/L)	Action Level (LOQ)* (μg/L)	Sample Affected	Action
RQ1703212-04	Napthalene	0.20	5.0	Trip Blank EB-01-040517	None None
				MW-07S-040517	None
				MW-08S-040517	U
				SV-13-040517	None
				MW-17S-040617	None
				MW-16S-040617	None
				SV-4-040617	None
				SV-11-040617	U
				SV-15-040617	U

2. Method Blank (RQ1703299-04) analyzed on 04/17/2017.

Blank ID	Compound	Results (μg/L)	Action Level (LOQ)* (µg/L)	Sample Affected	Action
RQ1703299-04	Napthalene	0.21	5.0	MW-09S-040517	None
				SV-11-040617	U
				MW-07I-040517	None
				SV-2-040617	None

3. Method Blank (RQ1703337-04) analyzed on 04/18/2017.

Blank ID	Compound	Results (μg/L)	Action Level (LOQ)* (μg/L)	Sample Affected	Action
RQ1703337-04	Napthalene	0.23	5.0	DUP-1-040517	None

- 4. Equipment Blank (EB-1-040517) (R1703120-012) associated with this SDG analyzed on 10/12/2016 was free of contamination. No qualifications were required.
- 5. Trip Blank (R1703120-014) associated with this SDG analyzed on 10/12/2016 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

- 1. Laboratory Control Sample (RQ1703212-03) was analyzed on 04/14/2017. All %RECs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample (RQ1703299-03) was analyzed on 04/17/2017. All %RECs were within the laboratory control limits. No qualifications were required.
- 3. Laboratory Control Sample (RQ1703337-03) was analyzed on 04/18/2017. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-040617 (R1703120-011) was collected as field duplicate for sample SV-13-040617 (R1703120-008). RPDs were within the control limits (<30%). No qualifications were required.

Field Sample	Compound	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
SV-13-040617	Ethylbenzene	SW846 8260C	3.9	μg/l	DUP-1-040617	4.4	µg/l	9.8	None
SV-13-040617	m,p-xylene	SW846 8260C	5.9	μg/l	DUP-1-040617	6.1	μg/l	0	None
SV-13-040617	Naphthalene	SW846 8260C	5	μg/l	DUP-1-040617	5.8	μg/l	51.6	None
SV-13-040617	o-Xylene	SW846 8260C	5.4	μg/l	DUP-1-040617	5.8	μg/l	28.6	None

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

 Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample SV-13-040617 (R1703120-008). All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Compound Quantitation and Reported Contract Required Quantitation Limits (CRQLs):

1. All results were within the linear calibration range. No qualifications were required.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within ± 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1703120.

SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-503

SDG #:

R1703120

Client:

KOMAN Government Solutions, LLC.

Date:

06/08/2017

Laboratory:

ALS Environmental, Rochester, NY

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twelve (12) water samples and one (1) field blank were analyzed for Semi-volatiles by SW-846 Method 8270D.
- 2. The samples were collected on 04/05-06/2017. The samples were submitted to ALS Environmental, Rochester, NY on 04/07/2017 for analysis.
- 3. The USEPA Region-II SOP HW-22, Revision 3, August 2008, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW-07S-040517	R1703120-001	04/05/17	SVO	Water	
MW-07I-040517	R1703120-002	04/05/17	SVO	Water	
MW-08S-040517	R1703120-003	04/05/17	SVO	Water	
MW-09S-040517	R1703120-004	04/05/17	SVO	Water	
MW-17S-040617	R1703120-005	04/06/17	SVO	Water	
SV-2-040617	R1703120-006	04/06/17	SVO	Water	
MW-16S-040617	R1703120-007	04/06/17	SVO	Water	
SV-13-040517	R1703120-008	04/05/17	SVO	Water	
SV-4-040617	R1703120-009	04/06/17	SVO	Water	
SV-11-040617	R1703120-010	04/06/17	SVO	Water	
DUP-1-040517	R1703120-011	04/05/17	SVO	Water	Field Duplicate of sample SV-13-
					040517
EB-1-040617	R1703120-012	04/05/17	SVO	Water	Equipment Blank
SV-15-040617	R1703120-013	04/06/17			

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

1. All aqueous samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 04/13/2017 (R-MS-54) exhibited acceptable %RSDs (≤30.0%) for CCC compounds and average RRF values for SPCC compounds. Also %RSDs for all other compounds were ≤20.0% and average RRF (>0.050). No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 04/13/2017 @ 09:35 (R-MS-54) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 2. CCV analyzed on 04/13/2017 @ 20:13 (R-MS-54) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.

Surrogates:

1. All surrogate %REC values in the original extracts were within the QC acceptance limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (RQ170304-01) associated with the aqueous samples extracted on 04/12/2017 and analyzed on 04/13/2017 was free of contaminations. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample/Laboratory Control Sample Duplicate (RQ1703042-02/03) were analyzed on 04/13/2017. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-040617 (R1703120-011) was collected as field duplicate for sample SV-13-040617 (R1703120-008). RPDs were within the control limits (<30%). No qualifications were required.

		Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
SV-2-032416	2-Methylnaphthalene	SW846 8270D	1.2	μg/l	DUP-1-120315	1.5	μg/l	22.2	None

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample SV-13-040517 (R1703120-008). All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1703120.

MetalsUSEPA Region II –Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-503

SDG #:

R1703120

Client:

KOMAN Government Solutions, LLC.

Date:

06/08/2017

Laboratory:

ALS Environmental, Rochester

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twelve (12) water samples and one (1) field blank analyzed for the following analysis:
 - 1.1 Trace Metals-ICP by SW-846 Method 6020A.
- 2. The samples were collected on 04/05-06/2017. The samples were submitted to ALS Environmental, Rochester, NY on 04/07/2017 for analysis.
- 3. The USEPA Region-II SOP No. HW-2, Revision 13, September 2006, Validation of Metals for Contract Laboratory Program (CLP), based on SOW-ILM05.3 (SOP Revision 13) was used in evaluating the Trace Metals data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW-07S-040517	R1703120-001	04/05/17	Total Pb	Water	
MW-07I-040517	R1703120-002	04/05/17	Total Pb	Water	
MW-08S-040517	R1703120-003	04/05/17	Total Pb	Water	
MW-09S-040517	R1703120-004	04/05/17	Total Pb	Water	
MW-17S-040617	R1703120-005	04/06/17	Total Pb	Water	
SV-2-040617	R1703120-006	04/06/17	Total Pb	Water	
MW-16S-040617	R1703120-007	04/06/17	Total Pb	Water	
SV-13-040517	R1703120-008	04/05/17	Total Pb	Water	
SV-4-040617	R1703120-009	04/06/17	Total Pb	Water	
SV-11-040617	R1703120-010	04/06/17	Total Pb	Water	
DUP-1-040517	R1703120-011	04/05/17	Total Pb	Water	Field Duplicate of
					sample SV-13-040517
EB-01-040517	R1703120-012	04/05/17	Total Pb	Water	Equipment Blank
SV-15-040617	R1703120-013	04/06/17	Total Pb	Water	

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

Holding Times:

- 1. All water samples were analyzed within the six (6) months holding time for lead analysis by ICP. No qualifications were required.
- 2. All water samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

1. All %RECs in the ICV and CCVs were within QC limits (90-110%). No qualifications were required.

KGS

CRQL Check Standard (CRI):

1. All CRI %RECs were within the control limits (70-130%). No qualifications were required.

ICP Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

- 1. All ICBs and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (PBW) digested on 04/10/2017 was free of contamination. No qualifications were required.
- 3. Equipment Blank (EB-01-040517 [R1703120-012]) digested on 04/10/2017 and analyzed on 04/11/17 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)</u>:

1. Laboratory Control Sample associated with Sample ID: LCSW was digested on 04/10/2017. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-040517 (R1703120-011) was collected as a field duplicate for sample SV-13-040517 (R1703120-008). RPDs were \leq 30%. Lead was non-detect in both samples. No qualifications were required.

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample SV-13-040517 (R1703120-008). All %RECs/RPDs were within the laboratory control limits. No qualifications were required.

ICP-AES Serial Dilution:

1. ICP serial dilution was performed on sample SV-13-040517 (R1703120-008). All results that are sufficiently high (concentration in the original sample is >50x the Method Detection Limits (MDL)), the serial dilution analysis (a 5x dilution) were within the acceptable limit (%D= ±10 %). No qualifications were required.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1703120.

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	Ethylbenzene	1	UG L	Ū	1	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	Naphthalene	1	UG L	U	1	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	m,p-Xylenes	2	UG L	U	2	5
MW-07S-040517	R1703120-001	8260C	1	4/5/2017	o-Xylene	1	UG L	U	1	5
MW-07S-040517	R1703120-001	8270D	1	4/5/2017	2-Methylnaphthalene	5.6	UG L	U	5.6	11
MW-07S-040517	R1703120-001	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	Ethylbenzene	1	UG L	U	1	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	m,p-Xylenes	2	UG L	U	2	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	Naphthalene	5.5	UG L		1	5
MW-07I-040517	R1703120-002	8260C	1	4/5/2017	o-Xylene	1.3	UG L	J	1	5
MW-07I-040517	R1703120-002	8270D	1	4/5/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
MW-07I-040517	R1703120-002	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	Ethylbenzene	1	UG L	U	1	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	m,p-Xylenes	2	UG L	U	2	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	o-Xylene	1	UG L	U	1	5
MW-08S-040517	R1703120-003	8260C	1	4/5/2017	Naphthalene	5	UG_L	U	1	5
MW-08S-040517	R1703120-003	8270D	1	4/5/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
MW-08S-040517	R1703120-003	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	Ethylbenzene	1	UG_L	U	1	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	Naphthalene	1	UG L	U	1	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
MW-09S-040517	R1703120-004	8260C	1	4/5/2017	m,p-Xylenes	2	UG_L	U	2	5
MW-09S-040517	R1703120-004	8260C	1	a sum and the second	o-Xylene	1	UG L	U	1	5

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
MW-09S-040517	R1703120-004	8270D	1	4/5/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
MW-09S-040517	R1703120-004	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
MW-17S-040617	R1703120-005	8270D	1	4/6/2017	2-Methylnaphthalene	32	UG L		5	9.4
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	Ethylbenzene	44	UG L		1	5
MW-17S-040617	R1703120-005	6010C	1	4/6/2017	Lead	2.4	UG L	J	2.5	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	m,p-Xylenes	98	UG L		2	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	Naphthalene	67	UG L		1	5
MW-17S-040617	R1703120-005	8260C	1	4/6/2017	o-Xylene	2	UG L	J	1	5
SV-2-040617	R1703120-006	8260C	2	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	UG L	U	2	10
SV-2-040617	R1703120-006	8260C	2	4/6/2017	Benzene	2	UG L	U	2	10
SV-2-040617	R1703120-006	8260C	2	4/6/2017	Toluene	2	UG L	U	2	10
SV-2-040617	R1703120-006	8260C	2	4/6/2017	Ethylbenzene	98	UG L		2	10
SV-2-040617	R1703120-006	6010C	1	4/6/2017	Lead	3	UG L	J	2.5	5
SV-2-040617	R1703120-006	8260C	2	4/6/2017	m,p-Xylenes	310	UG L		4	10
SV-2-040617	R1703120-006	8260C	2	4/6/2017	Naphthalene	23	UG L		2	10
SV-2-040617	R1703120-006	8260C	2	4/6/2017	o-Xylene	46	UG L		2	10
SV-2-040617	R1703120-006	8270D	1	4/6/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
MW-16S-040617	R1703120-007	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.2	UG L	J	1	5
MW-16S-040617	R1703120-007	8260C	1	4/6/2017	Ethylbenzene	13	UG L		1	5
MW-16S-040617	R1703120-007	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
MW-16S-040617	R1703120-007	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
MW-16S-040617	R1703120-007	6010C	1	4/6/2017	Lead	2.2	UG L	J	2.5	5
MW-16S-040617	R1703120-007	8260C	1	4/6/2017	m,p-Xylenes	4.7	UG L	j	2	5
MW-16S-040617	R1703120-007	8260C	1		Naphthalene	6.1	UG L		1	5
MW-16S-040617	R1703120-007	8270D	1	4/6/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
MW-16S-040617	R1703120-007	8260C	1		o-Xylene	0.32	UG L	j l	1	5
SV-13-040517	R1703120-008	8260C	1		1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	Ü	1	5
SV-13-040517	R1703120-008	8270D	1		2-Methylnaphthalene	1.2	UG L	J	5	9.4
SV-13-040517	R1703120-008	8260C	1		Benzene	1	UG L	Ü	1	5
SV-13-040517	R1703120-008	8260C	1		Ethylbenzene	3.9	UG_L	j	1	5
SV-13-040517	R1703120-008	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
SV-13-040517	R1703120-008	8260C	1	4/5/2017	m,p-Xylenes	5.9	UG L		2	5
SV-13-040517	R1703120-008	8260C	1	4/5/2017	Naphthalene	5	UG L	J	1	5
SV-13-040517	R1703120-008	8260C	1	4/5/2017	o-Xylene	5.4	UG L		1	5
SV-13-040517	R1703120-008	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	UG L	J	1	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	Ethylbenzene	6.1	UG L		1	5
SV-4-040617	R1703120-009	6010C	1	4/6/2017	Lead	3.6	UG L	J	2.5	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	m,p-Xylenes	33	UG L		2	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
SV-4-040617	R1703120-009	8260C	1	4/6/2017	Naphthalene	19	UG L		1	5
SV-4-040617	R1703120-009	8270D	1	4/6/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
SV-4-040617	R1703120-009	8260C	1	4/6/2017	o-Xylene	13	UG L		1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.1	UG L	J	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Ethylbenzene	1	UG_L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	m,p-Xylenes	2	UG L	U	2	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	o-Xylene	0.21	UG L	J	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Naphthalene	0.39	UG L	U	1	5
SV-11-040617	R1703120-010	6010C	1	4/6/2017	Lead	2.5	UG L	U	2.5	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	4.2	UG L	J	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Ethylbenzene	1	UG L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	Naphthalene	5	UG_L	U	1	5
SV-11-040617	R1703120-010	8260C	1	4/6/2017	m,p-Xylenes	2	UG_L	U	2	5
SV-11-040617	R1703120-010	8260C	1		o-Xylene	0.24	UG L	J	1	5
SV-11-040617	R1703120-010	8270D	1	4/6/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
DUP-1-040517	R1703120-011	8270D	1		2-Methylnaphthalene	1.5	UG L	j	5	9.4
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
DUP-1-040517	R1703120-011	8260C	1	0 PULL 0707 BY 1910 CV	Ethylbenzene	4.4	UG L	j	1	5
DUP-1-040517	R1703120-011	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	m,p-Xylenes	6.1	UG L		2	5
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	Naphthalene	5.8	UG L		1	5
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	o-Xylene	5.8	UG L		1	5
DUP-1-040517	R1703120-011	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	Ethylbenzene	1	UG L	U	1.	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	Naphthalene	1	UG L	U	1	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	m,p-Xylenes	2	UG L	U	2	5
EB-01-040517	R1703120-012	8260C	1	4/5/2017	o-Xylene	1	UG L	U	1	5
EB-01-040517	R1703120-012	8270D	1	4/5/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
EB-01-040517	R1703120-012	6010C	1	4/5/2017	Lead	2.5	UG L	U	2.5	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.4	UG L	J	1	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	Naphthalene	5	UG L	U	1	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	Benzene	1	UG L	U	1	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	Ethylbenzene	1	UG L	U	1	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	Toluene	1	UG L	U	1	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	m,p-Xylenes	2	UG L	U	2	5
SV-15-040617	R1703120-013	8260C	1	4/6/2017	o-Xylene	1	UG L	U	1	5
SV-15-040617	R1703120-013	8270D	1	4/6/2017	2-Methylnaphthalene	5	UG L	U	5	9.4
SV-15-040617	R1703120-013	6010C	1	4/6/2017	Lead	2.5	UG L	U	2.5	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	U	1	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	Benzene	1	UG L	U	1	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	Ethylbenzene	1	UG L	U	1	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	Naphthalene	1	UG L	U	1	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	Toluene	1	UG L	U	1	5
TRIP BLANK	R1703120-014	8260C	1	4/5/2017	m,p-Xylenes	2	UG L	U	2	5
TRIP BLANK	R1703120-014	8260C	1		o-Xylene	1	UG L	U	1	5

OCLOBER 7017

VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-305

SDG #:

R1709775

Client:

KOMAN Government Solutions, LLC.

Date:

11/13/2017

Laboratory:

ALS Environmental, Rochester, NY

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for 12 (twelve) water samples and 1 (one) field blank and 1 (one) trip blank were analyzed for Volatiles by SW846 Method 8260C.
- 2. The samples were collected on 10/10-12/2017. The samples were submitted to ALS Environmental, Rochester, NY on 10/12/2017 for analysis.
- 3. The USEPA Region II SOP HW-24, Revision No.: 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			•
MW-07S-101017	R1709775-001	10/10/17	VOA	Water	
MW-07I-101217	R1709775-002	10/12/17	VOA	Water	
MW-08S-101017	R1709775-003	10/10/17	VOA	Water	
MW-09S-101017	R1709775-004	10/10/17	VOA	Water	
SV-2-101017	R1709775-005	10/10/17	VOA	Water	
SV-4-101117	R1709775-006	10/11/17	VOA	Water	
SV-11-101117	R1709775-007	10/11/17	VOA	Water	
SV-13-101117	R1709775-008	10/11/17	VOA	Water	
SV-15-101117	R1709775-009	10/11/17	VOA	Water	
MW-16S-101117	R1709775-010	10/11/17	VOA	Water	
MW-17S-101017	R1709775-011	10/10/17	VOA	Water	
DUP-1-101117	R1709775-012	10/11/17	VOA	Water	Field Duplicate of sample MW-
					16S-101117
FB-1-101217	R1709775-013	10/12/17	VOA	Water	Field Blank
TB-1-101217	R1709775-014	10/12/17	VOA	Water	Trip Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative indicated that there were problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. Temperatures were above QC limits at 11.8, 6.3 and 11.2 degrees. It was noted that the samples were poorly packed, and ice was melted. Two vials were broken upon arrival, samples vials for MW-16S and MW09S. There was headspace in the trip blank bottle.

VOC results in trip blank TB-1-101217 were all qualified as estimated (UJ) due to headspace in the VOC jar.

All sample results in this SDG are qualified as estimated (J/UJ) due to high cooler temperatures.

Holding Times:

- 1. All water samples were analyzed within 14 days from sample collection. No qualifications were required.
- 2. All water samples were properly preserved (pH<2.0). No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 08/31/2017 (R-MS-12) exhibited acceptable %RSDs and average RRF values for all compounds. No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 10/19/2017 @ 10:35 (R-MS-12) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 2. CCV analyzed on 10/19/2017 @ 20:44 (R-MS-12) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 3. CCV analyzed on 10/20/2017 @ 09:51 (R-MS-12) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 4. CCV analyzed on 10/20/2017 @ 19:41 (R-MS-12) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. %Ds for all other compounds were ≤20.0%. No qualifications were required.

Surrogates:

1. Surrogates %RECs values for all water samples and associated QC were within the laboratory limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all four internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (RQ1700796-04) analyzed on 10/19/2017 was free of contamination. No qualifications were required.
- 2. Method Blank (RQ1710834-04) analyzed on 10/20/2017 was free of contamination. No qualifications were required.
- 3. Equipment Blank (EB-1-040517) (R1703120-012) associated with this SDG analyzed on 10/12/2017.

Blank ID	Compound	Results (µg/L)	Action Level (LOQ)* (μg/L)	Sample Affected	Action
FB-1-101217	Toluene	0.30	5.0	All field samples in this SDG	None

4. Trip Blank TB-1 101217 (R1709775-014) associated with this SDG analyzed on 10/12/2017 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Sample (RQ1710796-03) was analyzed on 10/19/2017. All %RECs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample (RQ1710835-03) was analyzed on 10/20/2017. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-101117 (R1709775-012) was collected as field duplicate for sample MW-16S-101117 (R1709775-010). RPDs were within the control limits (<30%) with the following exception:

Field Sample	Compound	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
MW-16S-									
101117	Ethylbenzene	SW846 8260C	15	μg/l	DUP-1-101117	17	μg/l	12.5	None
MW-16S-							1.0-		110110
101117	m,p-xylene	SW846 8260C	8.8	μg/l	DUP-1-101117	10	μg/l	10	None
MW-16S-							1.0	- 10	110110
101117	Naphthalene	SW846 8260C	9	μg/l	DUP-1-101117	10	μg/l	12.8	None
MW-16S-	-			1.0			10.	12.0	rione
101117	o-Xylene	SW846 8260C	0.38	μg/l	DUP-1-101117	0.68	μg/l	56.6	J

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

- 1. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-16S-101117 (R1709775-010). All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample DUP-1-101117 (R1709775-012). All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Compound Quantitation and Reported Contract Required Quantitation Limits (CRQLs):

1. All results were within the linear calibration range. No qualifications were required.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1709775.

SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-305

SDG #:

R1709775

Client:

KOMAN Government Solutions, LLC.

Date:

11/13/2017

Laboratory:

ALS Environmental, Rochester, NY

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twelve (12) water samples and one (1) field blank were analyzed for Semi-volatiles by SW-846 Method 8270D.
- 2. The samples were collected on 10/10-12/2017. The samples were submitted to ALS Environmental, Rochester, NY on 10/12/2017 for analysis.
- 3. The USEPA Region-II SOP HW-22, Revision 3, August 2008, Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			•
MW-07S-101017	R1709775-001	10/10/17	SVO	Water	
MW-07I-101217	R1709775-002	10/12/17	SVO	Water	
MW-08S-101017	R1709775-003	10/10/17	SVO	Water	
MW-09S-101017	R1709775-004	10/10/17	SVO	Water	
SV-2-101017	R1709775-005	10/10/17	SVO	Water	
SV-4-101117	R1709775-006	10/11/17	SVO	Water	
SV-11-101117	R1709775-007	10/11/17	SVO	Water	
SV-13-101117	R1709775-008	10/11/17	SVO	Water	
SV-15-101117	R1709775-009	10/11/17	SVO	Water	
MW-16S-101117	R1709775-010	10/11/17	SVO	Water	
MW-17S-101017	R1709775-011	10/10/17	SVO	Water	
DUP-1-101117	R1709775-012	10/11/17	SVO	Water	Field Duplicate of sample MW-
					16S-101117
FB-1-101217	R1709775-013	10/12/17	SVO	Water	Equipment Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative indicated that there were problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. Temperatures were above QC limits at 11.8, 6.3 and 11.2 degrees. It was noted that the samples were poorly packed, and ice was melted. Two vials were broken upon arrival, samples vials for MW-16S and MW09S.

All sample results in this SDG are qualified as estimated (J/UJ) due to high cooler temperatures.

Holding Times:

1. All aqueous samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

GC/MS Tuning:

1. All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

KGS

Initial Calibration:

1. Initial calibration curve analyzed on 10/6/2017 (R-MS-51) exhibited acceptable %RSDs (≤30.0%) for CCC compounds and average RRF values for SPCC compounds. Also %RSDs for all other compounds were ≤20.0% and average RRF (>0.050). No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 10/19/2017 @ 08:39 (R-MS-51) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 2. CCV analyzed on 10/19/2017 @ 18:47 (R-MS-51) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 3. CCV analyzed on 10/19/2017 @ 11:34 (R-MS-51) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.
- 2. CCV analyzed on 10/19/2017 @ 18:11 (R-MS-51) exhibited acceptable %Ds (≤20.0%) for CCC compounds and RRF values for SPCC compounds. Also, %Ds for all other compounds were ≤20.0%. No qualifications were required.

Surrogates:

1. All surrogate %REC values in the original extracts were within the QC acceptance limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (RQ1710643-01) associated with the aqueous samples extracted on 10/17/2017 and analyzed on 10/19/2017 was free of contaminations. No qualifications were required.

2. Equipment Blank (EB-1-040517) (R1703120-012) associated with this SDG analyzed on 10/19/2017 was free of contamination. No qualifications were required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample/Laboratory Control Sample Duplicate (RQ1710643-02/03) were analyzed on 10/19/2017. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-101117 (R1709775-012) was collected as field duplicate for sample MW-16S-101117 (R1709775-010). 2-Methylnaphthalene was detected in the field duplicated sample but was non-detect in the field sample. Results for 2-methylnaphthalene were qualified as estimated (UJ/J) in the field duplicate pair.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on sample MW-16S-101117 (R1709775-010). All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within ± 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1709775.

Metals USEPA Region II –Data Validation

Project Name:

NWIRP Calverton, Site 7 Quarterly LTM

Location:

Calverton, New York

Project Number:

2032-305

SDG #:

R1709775

Client:

KOMAN Government Solutions, LLC.

Date:

11/15/2017

Laboratory:

ALS Environmental, Rochester

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twelve (12) water samples and one (1) field blank analyzed for the following analysis:
 - 1.1 Trace Metals-ICP by SW-846 Method 6020A.
- 2. The samples were collected on 10/10-12/2017. The samples were submitted to ALS Environmental, Rochester, NY on 10/12/2017 for analysis.
- 3. The USEPA Region-II SOP No. HW-2, Revision 13, September 2006, Validation of Metals for Contract Laboratory Program (CLP), based on SOW-ILM05.3 (SOP Revision 13) was used in evaluating the Trace Metals data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date	· ·		P. C.
MW-07S-101017	R1709775-001	10/10/17	Total Pb	Water	
MW-07I-101217	R1709775-002	10/12/17	Total Pb	Water	
MW-08S-101017	R1709775-003	10/10/17	Total Pb	Water	
MW-09S-101017	R1709775-004	10/10/17	Total Pb	Water	
SV-2-101017	R1709775-005	10/10/17	Total Pb	Water	
SV-4-101117	R1709775-006	10/11/17	Total Pb	Water	
SV-11-101117	R1709775-007	10/11/17	Total Pb	Water	
SV-13-101117	R1709775-008	10/11/17	Total Pb	Water	
SV-15-101117	R1709775-009	10/11/17	Total Pb	Water	
MW-16S-101117	R1709775-010	10/11/17	Total Pb	Water	
MW-17S-101017	R1709775-011	10/10/17	Total Pb	Water	
DUP-1-101117	R1709775-012	10/11/17	Total Pb	Water	Field Duplicate of
					sample MW-16S-
					101117
FB-1-101217	R1709775-013	10/12/17	Total Pb	Water	Equipment Blank

Sample Conditions/Problems:

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative indicated that there were problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. Temperatures were above QC limits at 11.8, 6.3 and 11.2 degrees. It was noted that the samples were poorly packed, and ice was melted. Two vials were broken upon arrival, samples vials for MW-16S and MW09S. No qualifications were required.

Holding Times:

- 1. All water samples were analyzed within the six (6) months holding time for lead analysis by ICP. No qualifications were required.
- 2. All water samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

Initial and Continuing Calibration Verification (ICV and CCV):

1. All %RECs in the ICV and CCVs were within QC limits (90-110%). No qualifications were required.

CRQL Check Standard (CRI):

1. All CRI %RECs were within the control limits (70-130%). No qualifications were required.

ICP Interference Check Sample:

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

Blanks (Method Blank, ICB and CCB):

- 1. All ICBs and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (PBW) digested on 10/18/2017 was free of contamination. No qualifications were required.
- 3. Field Blank (FB-01-101217 [R1709775-013]) digested on 10/18/2017 and analyzed on 10/20/17 was free of contamination. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample associated with Sample ID: LCSW was digested on 10/18/2017. All %RECs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-1-101117 (R1709775-012) was collected as a field duplicate for sample MW-16S-101117 (R1709775-010). Lead was non-detect in both samples. No qualifications were required.

KGS

Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample MW-16S-101117 (R1709775-010). All %RECs/RPDs were within the laboratory control limits. No qualifications were required.

ICP-AES Serial Dilution:

1. ICP serial dilution was performed on sample MW-16S-101117 (R1709775-010). All results that are sufficiently high (concentration in the original sample is >50x the Method Detection Limits (MDL)), the serial dilution analysis (a 5x dilution) were within the acceptable limit (%D= ±10 %). No qualifications were required.

Compound Quantitation and Reported Detection Limits:

1. All sample results were reported within the linear calibration range.

Comments:

1. Validation qualifiers (if required) were entered into the EDD for SDG: R1709775.

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
MW-07S-101017	R1709775-001	6010C	1	10/10/2017	Lead, Total	5	UG L	U	5	10
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	Benzene	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	Ethylbenzene	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	Naphthalene	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	Toluene	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	m,p-Xylenes	2	UG L	UJ	2	5
MW-07S-101017	R1709775-001	8260C	1	10/10/2017	o-Xylene	1	UG L	UJ	1	5
MW-07S-101017	R1709775-001	8270D	1	10/10/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
MW07I-101217	R1709775-002	6010C	1	10/12/2017	Lead, Total	5	UG L	U	5	10
MW07I-101217	R1709775-002	8260C	1	10/12/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	Benzene	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	Ethylbenzene	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	Naphthalene	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	Toluene	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	m,p-Xylenes	2	UG L	UJ	2	5
MW07I-101217	R1709775-002	8260C	1	10/12/2017	o-Xylene	1	UG L	UJ	1	5
MW07I-101217	R1709775-002	8270D	1	10/12/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
MW-08S 101017	R1709775-003	6010C	1	10/10/2017	Lead, Total	5	UG L	U	5	10
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	Benzene	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	Ethylbenzene	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	Naphthalene	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	Toluene	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	m,p-Xylenes	2	UG L	UJ	2	5
MW-08S 101017	R1709775-003	8260C	1	10/10/2017	o-Xylene	1	UG L	UJ	1	5
MW-08S 101017	R1709775-003	8270D	1	10/10/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
MW-09S 101017	R1709775-004	6010C	1	10/10/2017	Lead, Total	5	UG L	U	5	10
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	Benzene	1	UG L	UJ	1	5
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	Ethylbenzene	1	UG L	UJ	1	5
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	Naphthalene	1	UG L	UJ	1	5
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	Toluene	1	UG L	UJ	1	5

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	m,p-Xylenes	2	UG L	UJ	2	5
MW-09S 101017	R1709775-004	8260C	1	10/10/2017	o-Xylene	1	UG L	UJ	1	5
MW-09S 101017	R1709775-004	8270D	1	10/10/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
SV-2 101017	R1709775-005	6010C	1	10/10/2017	Lead, Total	5	UG L	U	5	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	2	UG L	UJ	2	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	Benzene	2	UG L	UJ	2	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	Ethylbenzene	120	UG L	J	2	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	Naphthalene	33	UG L	J	2	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	Toluene	2	UG L	UJ	2	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	m,p-Xylenes	750	UG L	J	4	10
SV-2 101017	R1709775-005	8260C	2	10/10/2017	o-Xylene	35	UG L	J	2	10
SV-2 101017	R1709775-005	8270D	1	10/10/2017	2-Methylnaphthalene	21	UG L	J	5	9.4
SV-4 101117	R1709775-006	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
SV-4 101117	R1709775-006	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.1	UG L	J	1	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	Benzene	1	UG L	UJ	1	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	Ethylbenzene	7.6	UG L	J	1	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	Naphthalene	16	UG L	J	1	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	m,p-Xylenes	62	UG L	J	2	5
SV-4 101117	R1709775-006	8260C	1	10/11/2017	o-Xylene	14	UG L	J	1	5
SV-4 101117	R1709775-006	8270D	1	10/11/2017	2-Methylnaphthalene	9.7	UG L	J	5	9.4
SV-11 101117	R1709775-007	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
SV-11 101117	R1709775-007	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.6	UG L	J	1	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	Benzene	1	UG L	UJ	1	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	Ethylbenzene	1	UG L	UJ	1	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	Naphthalene	2.7	UG L	J	1	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	m,p-Xylenes	0.67	UG L	J	2	5
SV-11 101117	R1709775-007	8260C	1	10/11/2017	o-Xylene	1.1	UG L	J	1	5
SV-11 101117	R1709775-007	8270D	1	10/11/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
SV-13 101117	R1709775-008	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
SV-13 101117	R1709775-008	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
SV-13 101117	R1709775-008	8260C	1		Benzene	1	UG L	UJ	1	5

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
SV-13 101117	R1709775-008	8260C	1	10/11/2017	Ethylbenzene	12	UG L	J	1	5
SV-13 101117	R1709775-008	8260C	1	10/11/2017	Naphthalene	15	UG L	J	1	5
SV-13 101117	R1709775-008	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
SV-13 101117	R1709775-008	8260C	1	10/11/2017	m,p-Xylenes	26	UG L	J	2	5
SV-13 101117	R1709775-008	8260C	1	10/11/2017	o-Xylene	30	UG L	J	1	5
SV-13 101117	R1709775-008	8270D	1	10/11/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
SV-15 101117	R1709775-009	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
SV-15 101117	R1709775-009	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	2.6	UG L	J	1	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	Benzene	1	UG L	UJ	1	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	Ethylbenzene	1	UG L	UJ	1	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	Naphthalene	0.67	UG L	J	1	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	m,p-Xylenes	2	UG L	UJ	2	5
SV-15 101117	R1709775-009	8260C	1	10/11/2017	o-Xylene	1	UG L	UJ	1	5
SV-15 101117	R1709775-009	8270D	1	10/11/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
MW-16S 101117	R1709775-010	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	Benzene	1	UG L	UJ	1	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	Ethylbenzene	15	UG L	J	1	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	Naphthalene	9	UG L	J	1	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	m,p-Xylenes	8.8	UG L	J	2	5
MW-16S 101117	R1709775-010	8260C	1	10/11/2017	o-Xylene	0.38	UG L	J	1	5
MW-16S 101117	R1709775-010	8270D	1	10/11/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
MW-17S 101017	R1709775-011	6010C	1	10/10/2017	Lead, Total	3.6	UG L	J	5	10
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	Benzene	1	UG L	UJ	1	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	Ethylbenzene	77	UG L	J	1	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	Naphthalene	30	UG L	J	1	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	Toluene	1	UG L	UJ	1	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	m,p-Xylenes	210	UG L	J	2	5
MW-17S 101017	R1709775-011	8260C	1	10/10/2017	o-Xylene	1.4	UG_L	J	1	5
MW-17S 101017	R1709775-011	8270D	1	10/10/2017	2-Methylnaphthalene	5.1	UG L	J	5	9.4

Sample Name	Lab ID	METHOD	Dilution	Sample Date	Analyte	Result	Unit	Qualifier	LOD	LOQ
DUP-1 101117	R1709775-012	6010C	1	10/11/2017	Lead, Total	5	UG L	U	5	10
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	Benzene	1	UG L	UJ	1	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	Ethylbenzene	17	UG L	J	1	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	Naphthalene	10	UG L	J	1	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	Toluene	1	UG L	UJ	1	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	m,p-Xylenes	10	UG L	J	2	5
DUP-1 101117	R1709775-012	8260C	1	10/11/2017	o-Xylene	0.68	UG L	J	1	5
DUP-1 101117	R1709775-012	8270D	1	10/11/2017	2-Methylnaphthalene	3.2	UG L	J	5	9.4
FB-1 101217	R1709775-013	6010C	1	10/12/2017	Lead, Total	5	UG L	U	5	10
FB-1 101217	R1709775-013	8260C	1	10/12/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	Benzene	1	UG L	UJ	1	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	Ethylbenzene	1	UG L	UJ	1	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	Naphthalene	1	UG L	UJ	1	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	Toluene	0.3	UG L	J	1	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	m,p-Xylenes	2	UG L	UJ	2	5
FB-1 101217	R1709775-013	8260C	1	10/12/2017	o-Xylene	1	UG L	UJ	1	5
FB-1 101217	R1709775-013	8270D	1	10/12/2017	2-Methylnaphthalene	5	UG L	UJ	5	9.4
TB-1 101217	R1709775-014	8260C	1	10/12/2017	1,1,2-Trichloro-1,2,2-Trifluoroethane	1	UG L	UJ	1	5
TB-1 101217	R1709775-014	8260C	1	10/12/2017	Benzene	1	UG L	UJ	1	5
TB-1 101217	R1709775-014	8260C	1	10/12/2017	Ethylbenzene	1	UG L	UJ	1	5
TB-1 101217	R1709775-014	8260C	1	10/12/2017	Naphthalene	1	UG L	UJ	1	5
TB-1 101217	R1709775-014	8260C	1	10/12/2017	Toluene	1	UG L	UJ	1	5
TB-1 101217	R1709775-014	8260C	1	10/12/2017	m,p-Xylenes	2	UG L	UJ	2	5
TB-1 101217	R1709775-014	8260C	1		o-Xylene	1	UG L	UJ	1	5

APPENDIX C

GROUNDWATER CONCENTRATION TRENDS (DECEMBER 2013 – OCTOBER 2017)

